We show evidence of electrical and thermal conductivity percolation in polymer based carbon nanotube (CNT) composites, which follow power law variations with respect to the CNT concentrations in the matrix. The experi...
详细信息
We show evidence of electrical and thermal conductivity percolation in polymer based carbon nanotube (CNT) composites, which follow power law variations with respect to the CNT concentrations in the matrix. The experimentally obtained percolation thresholds, i.e., ~ 0.074 vol % for single walled CNTs and ~ 2.0 vol % for multi-walled CNTs, were found to be aspect ratio dependent and in accordance with those determined theoretically from excluded volume percolation theory. A much greater enhancement, over 10 orders of magnitude, was obtained in the electrical conductivity at the percolation threshold, while a smaller increase of ~ 100 % was obtained in the thermal conductivity values. Such a difference is qualitatively explained on the basis of the respective conductivity contrast between the CNT filler and the polymer matrix.
It was recently discovered that in addition to its exotic electronic properties graphene reveals unusually high intrinsic thermal *** physics of phonons–the main heat carriers in graphene–was shown to be substantial...
详细信息
It was recently discovered that in addition to its exotic electronic properties graphene reveals unusually high intrinsic thermal *** physics of phonons–the main heat carriers in graphene–was shown to be substantially different in two-dimensional(2D)crystals,such as graphene,than in three-dimensional(3D)***,we report
We have used transmitted polarized light microscopy to examine the fluid contents of silk glands taken from Bombyx mori silkworms and Nephila clavipes orb-weaving spiders. In the absence of shear, the secretions are o...
We have used transmitted polarized light microscopy to examine the fluid contents of silk glands taken from Bombyx mori silkworms and Nephila clavipes orb-weaving spiders. In the absence of shear, the secretions are optically isotropic. As the concentration is allowed to increase by evaporation, microstructures typical of the nematic liquid crystalline state are observed. Thus it appears that naturally spun silk becomes liquid crystalline en route to solidifying into fiber - which is advantageous to introducing and retaining global molecular alignment. This will facilitate the formation of strong, stiff fibers without the need for a significant post-spinning draw. We have also found that natural silk does not exhibit the defects in molecular alignment that are typical of synthetic polymer fibers spun from liquid crystalline solutions or melts.
We investigated postannealing temperature dependence of the structural and magnetic properties of Co2Ti0.5Mn0.5Al and Co2Ti0.5Mn0.5Si films. It was observed that the Co2Ti0.5Mn0.5Al film formed an ordered L2 1 structu...
详细信息
In this paper we are concerned with the morphology of the polymers adsorbedon surfaces, in particular di-block copolymers. Our work is motivated by the experimental findings of Fladziioannou et al. [1] on the steric f...
In this paper we are concerned with the morphology of the polymers adsorbedon surfaces, in particular di-block copolymers. Our work is motivated by the experimental findings of Fladziioannou et al. [1] on the steric forces between two adsorbed layers of di-block poly(vinyl-2-pyridine)\ polystyrene (PV2P\ PS) copolymer on mica surfaces. The PV2P block binds strongly on the mica surfaces and the PS block extends into thesolvent toluene (good solvent for PS). Hadziiouannou et al. found that the repulsive forces between the two surfaces start at a distance 1) larger than 10 times the radius of gyration RG of a free P’ in toluene. Furthermore, the starting distance D increases with increasing degree of polymerization N of PS in a fashion I) ~ Na with a close to I. We,tudy the adsorption of di-block copolymer with Monte Carlo simulations. The Monte Carlo simulations are especially powerful in dealing with kinetics which is important in systems where hysteresis is observed II1 and cannot be appropriately taken into account by analytical (or numerical) calculations based onequilibrium assumptions.
As [60]fullerene is a very hydrophobic macromolecule, there have been a number of attempts to make it more hydrophilic for biomedical applications. By attaching hydrophilic moieties such as poly(oxyethylene)(POE) chai...
As [60]fullerene is a very hydrophobic macromolecule, there have been a number of attempts to make it more hydrophilic for biomedical applications. By attaching hydrophilic moieties such as poly(oxyethylene)(POE) chains and cyclodextrin molecules to [60]fullerene, novel water-soluble and biocompatible materials have been successfully prepared [1,2].The synthesis of novel macrocyclic fullerene conjugates which are water-soluble is reported. The telechelic fullerene derivatives have been prepared via addition reaction of POE-based arms with covalently bonded β-cyclodextrin (CD) to [60]fullerene. To this end, a mono-tosylated CD derivative has been prepared in pyridine and then reacted with an amino-functional POE in the presence of triethylamine. The subsequent reaction of [60]fullerene with the hydrophilic POE-conjugated CD-derivative yielded the macrofullerene after separation and purification *** macrocyclic [60]fullerene derivatives obtained were soluble in water and characterized by UV-VIS and FT-IR spectroscopy as well as light scattering measurements and thermogravimetric analysis.
The monomer 4-isothiocyanato styrene (ITS) was synthesized and in combination with trimethyl((4-vinylphenyl)efhynyl)-silane (TMVES) polymerized under controlled radical polymerization conditions resulting in orthogona...
详细信息
In this paper we show that a flash lamp can be employed to induce controlled lateral solidification of a-Si thin films. Specifically, a dual xenon-arc-lamp-based system was utilized to induce location-controlled compl...
详细信息
In this paper we show that a flash lamp can be employed to induce controlled lateral solidification of a-Si thin films. Specifically, a dual xenon-arc-lamp-based system was utilized to induce location-controlled complete melting by shaping the incident beam using a contact mask. The resulting laterally solidified microstructure consisted of exceptionally long grains (~10s to ~100s of μm) that were relatively free of intragrain-defects. With further development and optimization, the approach may lead to cost-effective/high-throughput processes and systems that can capture and enhance the advantages of laser-based/melt-mediated crystallization techniques.
暂无评论