咨询与建议

限定检索结果

文献类型

  • 74 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 67 篇 理学
    • 53 篇 数学
    • 32 篇 系统科学
    • 9 篇 统计学(可授理学、...
    • 7 篇 物理学
    • 5 篇 生物学
    • 3 篇 化学
    • 2 篇 大气科学
    • 2 篇 地球物理学
    • 1 篇 地质学
  • 63 篇 工学
    • 27 篇 控制科学与工程
    • 26 篇 计算机科学与技术...
    • 21 篇 软件工程
    • 8 篇 光学工程
    • 6 篇 土木工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 信息与通信工程
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 机械工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
  • 5 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 6 篇 interpolation
  • 3 篇 poles
  • 3 篇 dynamical system...
  • 3 篇 inverse problems
  • 3 篇 transfer functio...
  • 3 篇 differential equ...
  • 3 篇 linear systems
  • 2 篇 eigenvalues and ...
  • 2 篇 rational interpo...
  • 2 篇 rational functio...
  • 2 篇 iterative method...
  • 2 篇 linear time-inva...
  • 1 篇 image enhancemen...
  • 1 篇 covid-19
  • 1 篇 vector fitting
  • 1 篇 surveys
  • 1 篇 transfer functio...
  • 1 篇 feature selectio...
  • 1 篇 prediction model...
  • 1 篇 cancer

机构

  • 18 篇 department of ma...
  • 14 篇 department of ma...
  • 9 篇 department of ma...
  • 8 篇 max planck insti...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 department of ve...
  • 5 篇 royal stoke univ...
  • 5 篇 biomedical engin...
  • 5 篇 department of ex...
  • 5 篇 victorian instit...

作者

  • 29 篇 gugercin serkan
  • 11 篇 werner steffen w...
  • 11 篇 chung julianne
  • 8 篇 gosea ion victor
  • 6 篇 chung matthias
  • 6 篇 benner peter
  • 5 篇 reiter sean
  • 5 篇 mlinarić petar
  • 5 篇 embree mark
  • 4 篇 ackermann michae...
  • 3 篇 tenorio luis
  • 3 篇 serkan gugercin
  • 3 篇 saibaba arvind k...
  • 3 篇 jiang jiahua
  • 2 篇 saravia-butler a...
  • 2 篇 chalk stuart
  • 2 篇 antonsen erik l.
  • 2 篇 reynolds robert ...
  • 2 篇 kleinheinz korti...
  • 2 篇 venkateswaran ka...

语言

  • 74 篇 英文
  • 3 篇 其他
检索条件"机构=Department of Mathematics and Division of Computational Modeling and Data Analytics"
77 条 记 录,以下是1-10 订阅
排序:
FREQUENCY-BASED REDUCED MODELS FROM PURELY TIME-DOMAIN data VIA data INFORMATIVITY
收藏 引用
SIAM Journal on Scientific Computing 2025年 第2期47卷 A1225-A1250页
作者: Ackermann, Michael S. Gugercin, Serkan Department of Mathematics Virginia Tech BlacksburgVA24061 United States Department of Mathematics Division of Computational Modeling and Data Analytics Academy of Data Science Virginia Tech BlacksburgVA24061 United States
Frequency-based methods have been successfully employed in creating high-fidelity data-driven reduced order models (DDROMs) for linear dynamical systems. These methods require access to values (and sometimes derivativ... 详细信息
来源: 评论
IRKA Is a Riemannian Gradient Descent Method
收藏 引用
IEEE Transactions on Automatic Control 2025年 第5期70卷 2979-2991页
作者: Mlinaric, Petar Beattie, Christopher A. Drmac, Zlatko Gugercin, Serkan Virginia Tech Department of Mathematics BlacksburgVA24061 United States University of Zagreb Faculty of Natural Sciences Zagreb10000 Croatia Virginia Tech Department of Mathematics and Division of Computational Modeling and Data Analytics Academy of Data Science BlacksburgVA24061 United States
The iterative rational Krylov algorithm (IRKA) is a commonly used fixed point iteration developed to minimize the H2 model order reduction error. In this work, the IRKA is recast as a Riemannian gradient descent metho... 详细信息
来源: 评论
Interpolatory model reduction of dynamical systems with root mean squared error  11
Interpolatory model reduction of dynamical systems with root...
收藏 引用
11th Vienna International Conference on Mathematical Modelling, MATHMOD 2025
作者: Reiter, Sean Werner, Steffen W.R. Department of Mathematics Virginia Tech BlacksburgVA24061 United States Department of Mathematics and Division of Computational Modeling and Data Analytics Academy of Data Science Virginia Tech BlacksburgVA24061 United States
The root mean squared error is an important measure used in a variety of applications like structural dynamics and acoustics to model averaged deviations from standard behavior. For large-scale systems, simulations of... 详细信息
来源: 评论
Interpolatory model reduction of dynamical systems with root mean squared error
收藏 引用
IFAC-PapersOnLine 2025年 第1期59卷 385-390页
作者: Sean Reiter Steffen W.R. Werner Department of Mathematics Virginia Tech Blacksburg VA 24061 USA Department of Mathematics and Division of Computational Modeling and Data Analytics Academy of Data Science Virginia Tech Blacksburg VA 24061 USA
The root mean squared error is an important measure used in a variety of applications like structural dynamics and acoustics to model averaged deviations from standard behavior. For large-scale systems, simulations of... 详细信息
来源: 评论
TIME-DOMAIN ITERATIVE RATIONAL KRYLOV METHOD
收藏 引用
SIAM Journal on Scientific Computing 2025年 第3期47卷 A1628-A1651页
作者: Ackermann, Michael S. Gugercin, Serkan Department of Mathematics Virginia Tech Blacksburg 24061 VA United States Department of Mathematics Division of Computational Modeling and Data Analytics Academy of Data Science Virginia Tech Blacksburg 24061 VA United States
The Realization Independent Iterative Rational Krylov Algorithm (TF-IRKA) is a frequency-based data-driven reduced order modeling (DDROM) method that constructs H2 optimal DDROMs. However, as the H2 optimal approximat... 详细信息
来源: 评论
KLAP: KYP LEMMA BASED LOW-RANK APPROXIMATION FOR H2-OPTIMAL PASSIVATION
arXiv
收藏 引用
arXiv 2025年
作者: Nicodemus, Jonas Voigt, Matthias Gugercin, Serkan Unger, Benjamin University of Stuttgart Universitätsstr. 32 Stuttgart70569 Germany Department of Mathematics Division of Computational Modeling and Data Analytics Academy of Data Science Virginia Tech BlacksburgVA24061 United States Faculty of Mathematics and Computer Science UniDistance Suisse Schinerstr. 18 Brig3900 Switzerland
We present a novel passivity enforcement (passivation) method, called KLAP, for linear time-invariant systems based on the Kalman-Yakubovich-Popov (KYP) lemma and the closely related Lur’e equations. The passivation ... 详细信息
来源: 评论
Biomedical data and AI
收藏 引用
Science China Life Sciences 2025年 第5期68卷 1536-1540页
作者: Hao Xu Shibo Zhou Zefeng Zhu Vincenzo Vitelli Liangyi Chen Ziwei Dai Ning Yang Luhua Lai Shengyong Yang Sergey Ovchinnikov Zhuoran Qiao Sirui Liu Chen Song Jianfeng Pei Han Wen Jianfeng Feng Yaoyao Zhang Zhengwei Xie Yang-Yu Liu Zhiyuan Li Fulai Jin Hao Li Mohammad Lotfollahi Xuegong Zhang Ge Yang Shihua Zhang Ge Gao Pulin Li Qi Liu Jing-Dong Jackie Han Peking-Tsinghua Center for Life Sciences (CLS) Academy for Advanced Interdisciplinary StudiesPeking University Center for Quantitative Biology (CQB) Academy for Advanced Interdisciplinary StudiesPeking University Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program Academy for Advanced Interdisciplinary StudiesPeking University Department of Physics University of Chicago School of Life Sciences Southern University of Science and Technology Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies College of Chemistry and Molecular Engineering Peking University Department of Biotherapy Cancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan University Department of Biology Massachusetts Institute of Technology Lambic Therapeutics Inc. Changping Laboratory Al for Science Institute Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Fudan University Department of Obstetrics and Gynecology West China Second University HospitalSichuan University Peking University International Cancer Institute and Peking University-Yunnan Baiyao International Medical Institute and State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science CenterPeking University Channing Division of Network Medicine Department of MedicineBrigham and Women's Hospital and Harvard Medical School Center for Artificial Intelligence and Modeling the Carl R.Woese Institute for Genomic BiologyUniversity of Illinois Urbana-Champaign Department of Genetics and Genome Sciences School of Medicine and Department of Computer and Data Sciences and Department of Population and Quantitative Health SciencesCase Western Reserve University Department of Biochemistry and Biophysics University of California Sanger Institute Department of Automation Tsinghua University State Key Laboratory of Multimodal Artificial Intelligence Systems I
The development of artificial intelligence(AI) and the mining of biomedical data complement each other. From the direct use of computer vision results to analyze medical images for disease screening, to now integratin...
来源: 评论
Flexible krylov methods for pregularization
arXiv
收藏 引用
arXiv 2018年
作者: Chung, Julianne Gazzola, Silvia Department of Mathematics Computational Modeling Data Analytics Division Academy of Integrated Science Virginia Tech BlacksburgVA United States
In this paper we develop flexible Krylov methods for efficiently computing regular- ized solutions to large-scale linear inverse problems with an 2fit-to-data term and an .p penalization term, for p ≥ 1. First we app... 详细信息
来源: 评论
Localisation of regularised and multiview support vector machine learning
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2024年 第1期25卷 18029-18075页
作者: Aurelian Gheondea Cankat Tilki Institute of Mathematics of the Romanian Academy Bucharest Romania and Department of Mathematics Bilkent University Bilkent Ankara Turkey Department of Mathematics and Division of Computational Modeling and Data Analytics Virginia Polytechnic Institute and State University Blacksburg Virginia
We prove some representer theorems for a localised version of a semisupervised, manifold regularised and multiview support vector machine learning problem introduced by H.Q. Minh, L. Bazzani, and V. Murino, Journal of... 详细信息
来源: 评论
Hybrid projection methods with recycling for inverse problems
arXiv
收藏 引用
arXiv 2020年
作者: Chung, Julianne Sturler, Eric D.E. Jiang, Jiahua Department of Mathematics Computational Modeling and Data Analytics Division Academy of Integrated Science Virginia Tech BlacksburgVA United States Department of Mathematics Computational Modeling and Data Analytics Division Academy of Integrated Science Virginia Tech BlacksburgVA United States Department of Mathematics Virginia Tech BlacksburgVA United States
Iterative hybrid projection methods have proven to be very effective for solving large linear inverse problems due to their inherent regularizing properties as well as the added flexibility to select regularization pa... 详细信息
来源: 评论