咨询与建议

限定检索结果

文献类型

  • 632 篇 期刊文献
  • 66 篇 会议
  • 3 册 图书

馆藏范围

  • 701 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 580 篇 理学
    • 326 篇 数学
    • 257 篇 物理学
    • 112 篇 统计学(可授理学、...
    • 71 篇 生物学
    • 61 篇 系统科学
    • 50 篇 地球物理学
    • 47 篇 化学
    • 15 篇 天文学
  • 411 篇 工学
    • 148 篇 计算机科学与技术...
    • 107 篇 软件工程
    • 71 篇 力学(可授工学、理...
    • 65 篇 电气工程
    • 62 篇 电子科学与技术(可...
    • 58 篇 控制科学与工程
    • 42 篇 材料科学与工程(可...
    • 41 篇 动力工程及工程热...
    • 40 篇 生物医学工程(可授...
    • 39 篇 化学工程与技术
    • 39 篇 生物工程
    • 29 篇 光学工程
    • 26 篇 信息与通信工程
    • 21 篇 核科学与技术
    • 17 篇 机械工程
    • 17 篇 仪器科学与技术
    • 13 篇 航空宇航科学与技...
  • 42 篇 管理学
    • 22 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 25 篇 医学
    • 18 篇 临床医学
    • 17 篇 基础医学(可授医学...
  • 19 篇 农学
  • 14 篇 经济学
    • 14 篇 应用经济学
  • 6 篇 法学
  • 2 篇 教育学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 23 篇 gravitational wa...
  • 14 篇 stochastic syste...
  • 12 篇 gravitational wa...
  • 12 篇 gravitational wa...
  • 7 篇 partial differen...
  • 7 篇 diffusion
  • 7 篇 mean square erro...
  • 7 篇 black holes
  • 6 篇 eigenvalues and ...
  • 6 篇 inverse problems
  • 6 篇 spintronics
  • 6 篇 numerical method...
  • 5 篇 covid-19
  • 5 篇 cosmology
  • 5 篇 finite differenc...
  • 5 篇 neutron stars & ...
  • 5 篇 galerkin methods
  • 5 篇 magnetohydrodyna...
  • 5 篇 machine learning
  • 5 篇 fluid structure ...

机构

  • 27 篇 institute for pl...
  • 27 篇 university of so...
  • 24 篇 scuola di ingegn...
  • 24 篇 king’s college l...
  • 24 篇 infn sezione di ...
  • 24 篇 dipartimento di ...
  • 24 篇 università degli...
  • 24 篇 university of ma...
  • 24 篇 university of mi...
  • 24 篇 nasa goddard spa...
  • 24 篇 university of rh...
  • 24 篇 montclair state ...
  • 24 篇 infn trento inst...
  • 24 篇 indian institute...
  • 23 篇 colorado state u...
  • 23 篇 infn sezione di ...
  • 23 篇 national tsing h...
  • 23 篇 università di tr...
  • 23 篇 bellevue college...
  • 23 篇 wigner rcp rmki ...

作者

  • 24 篇 j. c. bayley
  • 24 篇 f. hellman
  • 24 篇 m. kinley-hanlon
  • 24 篇 t. mcrae
  • 24 篇 s. rowan
  • 24 篇 s. m. aronson
  • 24 篇 v. p. mitrofanov
  • 24 篇 a. j. tanasijczu...
  • 24 篇 g. moreno
  • 24 篇 g. hemming
  • 24 篇 b. f. neil
  • 24 篇 f. muciaccia
  • 24 篇 e. payne
  • 24 篇 d. schaetzl
  • 24 篇 s. a. pai
  • 24 篇 c. palomba
  • 24 篇 s. t. mcwilliams
  • 24 篇 b. b. lane
  • 24 篇 r. gray
  • 24 篇 k. kawabe

语言

  • 670 篇 英文
  • 31 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Department of Mathematics and Program in Applied Mathematical and Computational Sciences"
701 条 记 录,以下是171-180 订阅
排序:
Adaptive coupling of a deep neural network potential to a classical force field
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Linfeng Wang, Han Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing100088 China Department of Mathematics and Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Center for Data Science and Beijing International Center for Mathematical Research Peking University China Beijing Institute of Big Data Research Beijing100871 China
An adaptive modeling method (AMM) that couples a deep neural network potential and a classical force field is introduced to address the accuracy-efficiency dilemma faced by the molecular simulation community. The AMM ... 详细信息
来源: 评论
System Approach to mathematical Description of Transport Processes with Chemical Reaction in Multiphase Multicomponent Body  2
System Approach to Mathematical Description of Transport Pro...
收藏 引用
2nd IEEE International Conference on System Analysis and Intelligent Computing, SAIC 2020
作者: Chernukha, Olha Bilushchak, Yurii Pakholok, Bohdan Ctr. of Math. Modelling of Y. S. Pidstryhach Inst. of Appl. Prob. of Mechanics and Math. of the Natl. Acad. of Sci. of Ukraine Department of Mathematical Modeling of Nonequilibrium Processes Lviv Ukraine Lviv Polytechnic National University Institute of Applied Mathematics and Fundamental Sciences Department of Computational Mathematics and Programming Lviv Ukraine
In the work the system approach to the description of complex and compound systems is proposed. It is based on the synthesis of the classical mathematical modeling approach of coupled processes of different physical n... 详细信息
来源: 评论
Fast acoustic source imaging using multi-frequency sparse data
arXiv
收藏 引用
arXiv 2017年
作者: Alzaalig, Ala Hu, Guanghui Liu, Xiaodong Sun, Jiguang Department of Mathematical Sciences Michigan Technological University Beijing Computational Science Research Center Beijing100193 China Institute of Applied Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China Department of Mathematical Sciences Michigan Technological University College of Mathematical Sciences University of Electronic Science and Technology of China
We consider the acoustic source imaging problems using multiple frequency data. Using the data of one observation direction/point, we prove that some information (size and location) of the source support can be recove... 详细信息
来源: 评论
Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
收藏 引用
Physical Review Letters 2018年 第14期120卷 143001-143001页
作者: Linfeng Zhang Jiequn Han Han Wang Roberto Car Weinan E Department of Mathematics and Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA and Center for Data Science Beijing International Center for Mathematical Research Peking University Beijing Institute of Big Data Research Beijing 100871 People’s Republic of China
We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained ... 详细信息
来源: 评论
A Full Eulerian Fluid-Membrane Coupling Method with a Smoothed Volume-of-Fluid Approach
收藏 引用
Communications in computational Physics 2012年 第7期12卷 544-576页
作者: Satoshi Ii Xiaobo Gong Kazuyasu Sugiyama Jinbiao Wu Huaxiong Huang Shu Takagi Department of Mechanical Engineering The University of Tokyo7-3-1 Hongo Bunkyo-kuTokyo113-8656Japan Department of Engineering Mechanics NAOCEShanghai Jiaotong UniversityShanghai 200240China LMAM&School of Mathematical Sciences Peking UniversityBeijing 100871China Department of Mathematics and Statistics York University4700 Keele StreetTorontoOntarioCanada Computational Science Research Program RIKEN2-1 Hirosawa WakoSaitama351-0198Japan.
A novel full Eulerian fluid-elastic membrane coupling method on the fixed Cartesian coordinate mesh is proposed within the framework of the volume-of-fluid *** present method is based on a full Eulerian fluid-(bulk)st... 详细信息
来源: 评论
A discrete entropy power inequality for uniform distributions
A discrete entropy power inequality for uniform distribution...
收藏 引用
IEEE International Symposium on Information Theory
作者: Jae Oh Woo Mokshay Madiman Applied Mathematics Program Yale University New Haven CT USA Department of Mathematical Sciences Uiversity of Delaware Newark DE USA
We explore various tempting conjectures for discrete entropy power inequalities on the integers, proving both positive results for interesting subclasses of distributions and negative results that falsify some of the ... 详细信息
来源: 评论
Ab Initio Generalized Langevin Equation
arXiv
收藏 引用
arXiv 2022年
作者: Xie, Pinchen Car, Roberto Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Department of Chemistry Department of Physics Program in Applied and Computational Mathematics Princeton Institute for the Science and Technology of Materials Princeton University PrincetonNJ08544 United States AI for Science Institute Beijing China Center for Machine Learning Research School of Mathematical Sciences Peking University Beijing China
We introduce a machine learning-based approach called ab initio generalized Langevin equation (AIGLE) to model the dynamics of slow collective variables in materials and molecules. In this scheme, the parameters are l... 详细信息
来源: 评论
Uniform Anisotropic Regularity and Low Mach Number Limit of Non-isentropic Ideal MHD Equations with a Perfectly Conducting Boundary
arXiv
收藏 引用
arXiv 2024年
作者: Ju, Qiangchang Wang, Jiawei Zhang, Junyan Institute of Applied Physics and Computational Mathematics Beijing China Hua Loo-Keng Center for Mathematical Sciences Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China Department of Mathematics National University of Singapore Singapore
We prove the low Mach number limit of non-isentropic ideal magnetohydrodynamic (MHD) equations with general initial data in the half-space whose boundary satisfies the perfectly conducting wall condition. By observing... 详细信息
来源: 评论
CONVERGENCE RATES FOR BACKWARD SDEs DRIVEN BY LÉVY PROCESSES
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Chenguang Papapantoleon, Antonis Saplaouras, Alexandros DELFT INSTITUTE OF APPLIED MATHEMATICS EEMCS TU DELFT Delft2628 Netherlands DEPARTMENT OF MATHEMATICS SCHOOL OF APPLIED MATHEMATICAL AND PHYSICAL SCIENCES NATIONAL TECHNICAL UNIVERSITY OF ATHENS Zografou15780 Greece INSTITUTE OF APPLIED AND COMPUTATIONAL MATHEMATICS FORTH Heraklion70013 Greece
We consider Lévy processes that are approximated by compound Poisson processes and, correspondingly, BSDEs driven by Lévy processes that are approximated by BSDEs driven by their compound Poisson approximati... 详细信息
来源: 评论
Efficient sampling of high-dimensional free energy landscapes using adaptive reinforced dynamics
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Dongdong Zhang, Linfeng Wang, Yanze Chang, Junhan Wang, Han Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States DP Technology Beijing China College of Chemistry and Molecular Engineering Peking University Beijing100871 China Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China School of Mathematical Sciences Peking University Beijing China Department of Mathematics Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Beijing Institute of Big Data Research Beijing100871 China
Enhanced sampling methods such as metadynamics and umbrella sampling have become essential tools for exploring the configuration space of molecules and materials. At the same time, they have long faced a number of iss... 详细信息
来源: 评论