We probed the bending of actin subject to external forcing and viscous drag. Single actin filaments were moved perpendicular to their long axis in an oscillatory way by means of an optically tweezed latex bead attache...
详细信息
We probed the bending of actin subject to external forcing and viscous drag. Single actin filaments were moved perpendicular to their long axis in an oscillatory way by means of an optically tweezed latex bead attached to one end of the filaments. Shapes of these polymers were observed by epifluorescence microscopy. They were found to be in agreement with predictions of semiflexible polymer theory and slender-body hydrodynamics. A persistence length of 7.4±0.2 μm could be extracted.
In an era of fiscal austerity, downsizing and unforgiving pressure upon human and economic capital, it is an Augean task to identify resources for fresh and creative work. The realities of the day and the practical de...
详细信息
In an era of fiscal austerity, downsizing and unforgiving pressure upon human and economic capital, it is an Augean task to identify resources for fresh and creative work. The realities of the day and the practical demands of more immediate fleet needs can often dictate higher priorities. Yet, the Navy must avoid eating its seed corn. Exercising both technical insight and management foresight, the fleet, the R&D community, the Office of the Chief of Naval Operations (OpNav) and the product engineering expertise of the Naval Surface Warfare Center (NSWC) are joined and underway with integrated efforts to marry new, fully demonstrated technologies and operational urgencies. Defense funding today cannot sponsor all work that can be mission-justified over the long term because budgets are insufficient to support product maturation within the classical development cycle. However, by rigorous technical filtering and astute engineering of both marketplace capabilities and currently available components, it is possible in a few select cases to compress and, in effect, integrate advanced development (6.3), engineering development (6.4), weapon procurement (WPN), ship construction (SCN), operation and maintenance (O&M,N) budgetary categories when fleet criticalities and technology opportunities can happily meet. In short, 6.3 funds can be applied directly to ''ripe gateways'' so modern technology is inserted into existing troubled or aging systems, sidestepping the lengthy, traditional development cycle and accelerating practical payoffs to recurrent fleet problems. To produce such constructive results has required a remarkable convergence of sponsor prescience and engineering workforce excellence. The paper describes, extensively, the philosophy of approach, transition strategy, polling of fleet needs, technology assessment, and management team requirements. The process for culling and selecting specific candidate tasks for SHARP sponsorship (matching operational need with t
B. D. Coller, P. Holmes, John Lumley; Erratum: ‘‘Interaction of adjacent bursts in the wall region’’ [Phys. Fluids 6, 954 (1994)], Physics of Fluids, Volume 9,
B. D. Coller, P. Holmes, John Lumley; Erratum: ‘‘Interaction of adjacent bursts in the wall region’’ [Phys. Fluids 6, 954 (1994)], Physics of Fluids, Volume 9,
A general class of discrete, nonlinear renewal equations containing a real parameter is studied. Bifurcation theory methods are used to prove the existence of nontrivial periodic solutions and asymptotically periodic ...
详细信息
A general class of discrete, nonlinear renewal equations containing a real parameter is studied. Bifurcation theory methods are used to prove the existence of nontrivial periodic solutions and asymptotically periodic solutions. Fundamental to the approach is the “limit equation” whose periodic solutions are shown to be asymptotic limits of solutions of the renewal equation. An application is made to a model of age-structured population dynamics in which the bifurcation of nontrivial equilibria and 2-cycles is shown to occur with increasing inherent net reproductive value.
We show that the statistical properties of the large scales of the Kuramoto-Sivashinsky equation in the extended system limit can be understood in terms of the dynamical behavior of the same equation in a small finite...
The dynamics of the monomer-monomer surface reaction can be defined by an exact, closed set of differential rate equations in the limit of infinite absorption rates. We use these equations to obtain numerically conver...
A 2 + 1 Volterra system is considered, which in the continuum limit reduces to the well known Kadomtsev - Petviashvili equation and the 1 + 1 reduction becomes the Volterra system. The inverse scattering transform is ...
A 2 + 1 Volterra system is considered, which in the continuum limit reduces to the well known Kadomtsev - Petviashvili equation and the 1 + 1 reduction becomes the Volterra system. The inverse scattering transform is developed, and special solutions are obtained, including lump type solutions as well as solutions which depend on arbitrary functions.
作者:
Schulte, DPSkolnick, AHe has supported the development and operation of several naval systems
including advanced component selection for Trident II fire control and navigation systems. He served as branch manager of the Surface Ship ASW Combat System Branch which acted as the acquisition engineering agent for the AN/SQQ-89 Surface Ship Anti-Submarine Warfare Weapon System. He was then selected to manage the Module Engineering Department which provided engineering support to numerous naval systems including the AN/BSY-1 Submarine Combat System and the Trident II fire control and navigation system. He then served as the deputy program manager for NAVSEA Progressive Maintenance (2M/ATE). He holds a B.S. degree in Electrical Engineering from Purdue University and currently is pursuing a Maste's degree in Public Environmental Affairs at Indiana University—Purdue University
Indianapolis. He served at Applied Physics Laboratory/The Johns Hopkins University in missile development
then aboard USS Boston (CAG-1) and played leading roles in several weapon system developments (Regulus Terrier Tartar Talos) inertial navigation (Polaris) deep submergence (DSRV) and advanced ship designs (SES). He later was director Combat System Integration Naval Sea Systems Command and head Combat Projects Naval Ship Engineering Center. He led the Navy's High Energy Lasers and Directed Energy Weapons development efforts. He was vice president advanced technology at Operations Research Inc. and vice president maritime engineering at Defense Group Inc. before starting SSC in 1991. Dr. Skolnick holds a B.S. degree in Mathematics and Economics
Queens College an M.A. degree in Mathematics and Philosophy Columbia University an M.S. degree in Electrical/Aeronautical Engineering U.S. Naval Postgraduate School and a Ph.D. in Electrical Engineering and Applied Mathematics from Polytechnic University in New York. He is the author of many published papers on engineering design issues source selection procedures and large-scale complex technology problems
The Fleet continues to require high performance systems that can operate with dependability in the seas' unforgiving environments and under hostile action. Those demands are not new. What has changed is the urgent...
详细信息
The Fleet continues to require high performance systems that can operate with dependability in the seas' unforgiving environments and under hostile action. Those demands are not new. What has changed is the urgent priority formerly assigned to national defense issues. The arguments for continued superpower military strength are now roiled in politics along with unsettled budgets and uncertain force level projections. Current expectations revolve about indefinite fiscal and operational issues (difficult funding constraints and broadband threats). In the actual event of ''doing more with less,'' a practical response is to apply the creative power available from sound engineering judgement and the crucible of experience to the immediate needs of the Fleet. The attempt to shorten the path between advanced development effort and Fleet use has been tried occasionally in the past, often, without exemplary results. The Sustainable Hardware and Affordable Readiness Practices (SHARP) program, is a generic R&D effort under OpNav sponsorship that has been working steadily on sensible solutions to product engineering problems. Armed today with fast-time, large-scale computation abilities and modern tools for technical problem solving coupled with specialized engineering knowledge, it has been refreshed and is underway satisfying existing Fleet needs. The relationship between fully responsive engineering services and current operational needs is always demanding. The connection between advanced engineering development (6.3 category funds) and immediate Fleet usage brings added complexity and challenge, both technical and organizational. Illustrative examples of affordable engineering solutions to ''retain, revise, replace or retire'' questions are presented within the context of both Fleet realities and budgetary limitations. The discussion covers legacy system support, civil/military considerations and Fleet maintenance issues. It describes the substantial and critical payoffs i
暂无评论