The flow in a channel with its lower wall mounted with streamwise V-shaped riblets is simulated using a highly efficient spectral-element-Fourier method. The range of Reynolds numbers investigated is 500 to 4000, whic...
We examine the derivation of eddy-diffusivity equations for transport of passive scalars in a turbulent velocity field. Our main contention is that, in the long-time–large-distance limit, the eddy-diffusivity equatio...
We examine the derivation of eddy-diffusivity equations for transport of passive scalars in a turbulent velocity field. Our main contention is that, in the long-time–large-distance limit, the eddy-diffusivity equations can take very different forms according to the statistical properties of the subgrid velocity, and that these equations depend very sensitively on the interplay between spatial and temporal velocity fluctuations. Such crossovers can be represented in a ‘‘phase diagram’’ involving two relevant statistical parameters. Strikingly, the Kolmogorov-Obukhov statistical theory is shown to lie on a phase-transition boundary.
We present new algorithms for computing the H∞ optimal performance for a class of single-input/single-output (SISO) infinite-dimensional systems. The algorithms here only require use of one or two fast Fourier transf...
详细信息
A shift-invariant multiresolution representation of signals or images using dilations and translations of the autocorrelation functions of compactly supported wavelets is proposed. Although this set of functions does ...
详细信息
The wakes of bluff objects and in particular of circular cylinders are known to undergo a ‘fast ’ transition, from a laminar two-dimensional state a t Reynolds number 200 to a turbulent state a t Reynolds number 400...
The wakes of bluff objects and in particular of circular cylinders are known to undergo a ‘fast ’ transition, from a laminar two-dimensional state a t Reynolds number 200 to a turbulent state a t Reynolds number 400. The process has been documented in several eXperimental mvestigations, but the underlying physical mechanisms have remained largely unknown so far. In this paper, the transition process is investigated numerically, through direct simulation of the NavierStokes equations at representative Reynolds numbers, up to 500. A high-order timeaccurate, miXed spectral/spectral element technique is used. It is shown that the wake first becomes three-dimensional, as a result of a secondary instability of the two-dimensional vorteX street. This secondary instability appears at a Reynolds number close to 200. For slightly supercritical Reynolds numbers, a harmonic state develops, in which the flow oscillates at its fundamental frequency (Strouhal number) around a spanwise modulated time-average flow. In the near wake the modulation wavelength of the time-average flow is half of the spanwise wavelength of the perturbation flow, consistently with linear instability theory. The vorteX filaments have a spanwise wavy shape in the near wake, and form rib-like structures further downstream. At higher Reynolds numbers the three-dimensional flow oscillation undergoes a period-doubling bifurcation, in which the flow alternates between two different states. Phase-space analysis of the flow shows that the basic limit cycle has branched into two connected limit cycles. In physical space the period doubling appears as the shedding of two distinct types of vorteX filaments. Further increases of the Reynolds number result in a cascade of period-doubling bifurcations, which create a chaotic state in the flow at a Reynolds number of about 500. The flow is characterized by broadband power spectra, and the appearance intermittent phenomena. It is concluded that the wake undergoes transit
A possible role for phonon excitations of the cytoskeleton in intraneuronal pattern recognition and learning is discussed. Biophysical support is presented for molecular implementation of adaptive resonant theory (ART...
详细信息
A time-independent field theoretical framework for turbulence is suggested, based upon a variational principle for a stationary solution of the Fokker-Planck equation. We obtain a functional equation for the effective...
A time-independent field theoretical framework for turbulence is suggested, based upon a variational principle for a stationary solution of the Fokker-Planck equation. We obtain a functional equation for the effective Action of this spatial field theory and investigate its general properties and some numerical solutions. The equation is completely universal, and allows for the scale invariant solutions in the inertial range. The critical indices are not fixed at the kinematical level, but rather should be found from certain eigenvalue conditions, as in the field theory of critical phenomena. Unlike the Wyld field theory, there are no divergences in our Feynman integrals, due to some magic cancellations. The simplest possible Gaussian approximation yields crude but still reasonable results (there are deviations from Kolmogorov scaling in 3 dimensions, but at 2.7544 dimensions it would be exact). Our approach allows us to study some new problems, such as spontaneous parity breaking in 3d turbulence. It turns out that with the appropriate helicity term added to the velocity correlation function, logarithmic infrared divergences arise in our field theory which effectively eliminates these terms. In order to build a quantitative theory of turbulence, one should consider more sophisticated Ansatz for the effective Action, which would require serious numerical work.
Two-point Green's function is measured on the manifolds of a 2-dimensional quantum gravity. The recursive sampling technique is used to generate the triangulations, lattice sizes being up to hundred thousand trian...
Two-point Green's function is measured on the manifolds of a 2-dimensional quantum gravity. The recursive sampling technique is used to generate the triangulations, lattice sizes being up to hundred thousand triangles. The grid Laplacian was inverted by means of the algebraic multi-grid solver. The free field model of the Quantum Gravity assumes the Gaussian behavior of Liouville field and curvature. We measured histograms as well as six momenta of these fields. Our results support the Gaussian assumption.
In this article we present a new formulation for coupling spectral element discretizations to finite difference and finite element discretizations addressing flow problems in very complicated geometries. A general ite...
详细信息
The Ising model is stimulated on the manifolds of 2-dimensional quantum gravity, which are represented by fixed random triangulations (so-called quenched Ising model). Unlike the case of the Ising model on a dynamical...
The Ising model is stimulated on the manifolds of 2-dimensional quantum gravity, which are represented by fixed random triangulations (so-called quenched Ising model). Unlike the case of the Ising model on a dynamical random triangulation, there is no analytical prediction for the quenched case, since these manifolds do not have internal Hausdorff dimension and the problem cannot be formulated in matrix model language. The recursive sampling technique is used to generate the triangulations, lattice sizes being up to ten thousand triangles. The Metropolis algorithm was used for the spin update in order to obtain the initial estimation of the Curie point. After that we used the Wolff cluster algorithm in the critical region. We observed a second order phase transition, similar to that for the Ising model on a regular 2-dimensional lattice, and measured the critical exponents.
暂无评论