咨询与建议

限定检索结果

文献类型

  • 307 篇 期刊文献
  • 38 篇 会议
  • 2 册 图书

馆藏范围

  • 347 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 229 篇 理学
    • 99 篇 物理学
    • 91 篇 数学
    • 59 篇 统计学(可授理学、...
    • 48 篇 地球物理学
    • 42 篇 生物学
    • 32 篇 化学
    • 17 篇 系统科学
    • 13 篇 天文学
  • 211 篇 工学
    • 75 篇 计算机科学与技术...
    • 57 篇 软件工程
    • 48 篇 电气工程
    • 42 篇 电子科学与技术(可...
    • 36 篇 信息与通信工程
    • 35 篇 生物医学工程(可授...
    • 31 篇 生物工程
    • 25 篇 光学工程
    • 23 篇 动力工程及工程热...
    • 17 篇 控制科学与工程
    • 16 篇 化学工程与技术
    • 15 篇 材料科学与工程(可...
    • 13 篇 仪器科学与技术
    • 10 篇 力学(可授工学、理...
  • 48 篇 管理学
    • 26 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 43 篇 医学
    • 32 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 16 篇 公共卫生与预防医...
    • 16 篇 药学(可授医学、理...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 8 篇 法学
  • 8 篇 农学
  • 3 篇 教育学

主题

  • 11 篇 deep learning
  • 7 篇 black holes
  • 5 篇 time series
  • 5 篇 tumors
  • 4 篇 galaxies
  • 4 篇 social networks
  • 4 篇 telescopes
  • 4 篇 machine learning
  • 4 篇 potential energy
  • 4 篇 dynamics
  • 3 篇 network models
  • 3 篇 deep neural netw...
  • 3 篇 social systems
  • 3 篇 semi-supervised ...
  • 3 篇 stars
  • 3 篇 diagnosis
  • 3 篇 count data
  • 3 篇 stochastic syste...
  • 3 篇 population stati...
  • 3 篇 diseases

机构

  • 28 篇 department of ph...
  • 28 篇 data science ins...
  • 25 篇 perimeter instit...
  • 24 篇 california insti...
  • 24 篇 program in appli...
  • 23 篇 kavli institute ...
  • 23 篇 instituto de ast...
  • 23 篇 steward observat...
  • 22 篇 department of ph...
  • 22 篇 shanghai astrono...
  • 22 篇 national astrono...
  • 21 篇 department of as...
  • 21 篇 max-planck-insti...
  • 20 篇 enrico fermi ins...
  • 20 篇 cornell center f...
  • 20 篇 waterloo centre ...
  • 19 篇 wits centre for ...
  • 19 篇 university of sc...
  • 19 篇 key laboratory o...
  • 19 篇 department of sp...

作者

  • 40 篇 masuda naoki
  • 36 篇 chan chi-kwan
  • 25 篇 broderick avery ...
  • 24 篇 blackburn lindy
  • 23 篇 christian pierre
  • 22 篇 gurwell mark
  • 22 篇 haggard daryl
  • 22 篇 fromm christian ...
  • 22 篇 fish vincent l.
  • 21 篇 james david j.
  • 21 篇 chael andrew
  • 21 篇 bremer michael
  • 21 篇 friberg per
  • 21 篇 bronzwaer thomas
  • 21 篇 brissenden roger
  • 21 篇 bower geoffrey c...
  • 20 篇 cruz-osorio alej...
  • 20 篇 eatough ralph p.
  • 20 篇 davelaar jordy
  • 20 篇 johnson michael ...

语言

  • 324 篇 英文
  • 23 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Department of Mathematics and Program in Data Science"
347 条 记 录,以下是81-90 订阅
Biomedical data and AI
收藏 引用
science China Life sciences 2025年 第5期68卷 1536-1540页
作者: Hao Xu Shibo Zhou Zefeng Zhu Vincenzo Vitelli Liangyi Chen Ziwei Dai Ning Yang Luhua Lai Shengyong Yang Sergey Ovchinnikov Zhuoran Qiao Sirui Liu Chen Song Jianfeng Pei Han Wen Jianfeng Feng Yaoyao Zhang Zhengwei Xie Yang-Yu Liu Zhiyuan Li Fulai Jin Hao Li Mohammad Lotfollahi Xuegong Zhang Ge Yang Shihua Zhang Ge Gao Pulin Li Qi Liu Jing-Dong Jackie Han Peking-Tsinghua Center for Life Sciences (CLS) Academy for Advanced Interdisciplinary StudiesPeking University Center for Quantitative Biology (CQB) Academy for Advanced Interdisciplinary StudiesPeking University Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program Academy for Advanced Interdisciplinary StudiesPeking University Department of Physics University of Chicago School of Life Sciences Southern University of Science and Technology Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies College of Chemistry and Molecular Engineering Peking University Department of Biotherapy Cancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan University Department of Biology Massachusetts Institute of Technology Lambic Therapeutics Inc. Changping Laboratory Al for Science Institute Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Fudan University Department of Obstetrics and Gynecology West China Second University HospitalSichuan University Peking University International Cancer Institute and Peking University-Yunnan Baiyao International Medical Institute and State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science CenterPeking University Channing Division of Network Medicine Department of MedicineBrigham and Women's Hospital and Harvard Medical School Center for Artificial Intelligence and Modeling the Carl R.Woese Institute for Genomic BiologyUniversity of Illinois Urbana-Champaign Department of Genetics and Genome Sciences School of Medicine and Department of Computer and Data Sciences and Department of Population and Quantitative Health SciencesCase Western Reserve University Department of Biochemistry and Biophysics University of California Sanger Institute Department of Automation Tsinghua University State Key Laboratory of Multimodal Artificial Intelligence Systems I
The development of artificial intelligence(AI) and the mining of biomedical data complement each other. From the direct use of computer vision results to analyze medical images for disease screening, to now integratin...
来源: 评论
Improved LSTM hyperparameters alongside sentiment walk-forward validation for time series prediction
收藏 引用
Journal of Open Innovation: Technology, Market, and Complexity 2025年 第1期11卷
作者: Wahyuddin, Eko Putra Caraka, Rezzy Eko Kurniawan, Robert Caesarendra, Wahyu Gio, Prana Ugiana Pardamean, Bens Department of Statistical Computing Politeknik Statistika STIS Jakarta 13330 Indonesia Statistics Indonesia (BPS) Jl. Dr Sutomo 6-8 Jakarta Indonesia School of Economics and Business Telkom University Bandung 40257 Indonesia Research Center for Data and Information Sciences Research Organization for Electronics and Informatics National Research and Innovation Agency (BRIN) Bandung 40135 Indonesia Faculty of Integrated Technologies Universiti Brunei Darussalam Gadong BE1410 Brunei Darussalam Department of Mathematics Universitas Sumatera Utara Medan 20155 Indonesia Bioinformatics and Data Science Research Centre Bina Nusantara University DKI Jakarta 11480 Indonesia Computer Science Department BINUS Graduate Program Master of Computer Science Program Bina Nusantara University DKI Jakarta 11480 Indonesia
This study aims to address the common issue of biased estimation errors in time series modeling by analyzing the error in locating ideal hyperparameters and defining appropriate validation methods. Specifically, it fo... 详细信息
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Embedding and trajectories of temporal networks
arXiv
收藏 引用
arXiv 2022年
作者: Thongprayoon, Chanon Livi, Lorenzo Masuda, Naoki Department of Mathematics State University of New York at Buffalo BuffaloNY United States Department of Computer Science University of Manitoba WinnipegMB Canada Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo BuffaloNY United States Faculty of Science and Engineering Waseda University Shinjuku Tokyo Japan
Temporal network data are increasingly available in various domains, and often represent highly complex systems with intricate structural and temporal evolutions. Due to the difficulty of processing such complex data,... 详细信息
来源: 评论
Mean-field theory for double-well systems on degree-heterogeneous networks
arXiv
收藏 引用
arXiv 2022年
作者: Kundu, Prosenjit MacLaren, Neil G. Kori, Hiroshi Masuda, Naoki Department of Mathematics State University of New York BuffaloNY14260-2900 United States Department of Complexity Science and Engineering The University of Tokyo Chiba277-8561 Japan Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo BuffaloNY14260-5030 United States
Many complex dynamical systems in the real world, including ecological, climate, financial, and power-grid systems, often show critical transitions, or tipping points, in which the system’s dynamics suddenly transit ... 详细信息
来源: 评论
What we should learn from pandemic publishing
arXiv
收藏 引用
arXiv 2024年
作者: Sikdar, Satyaki Venturini, Sara Charpignon, Marie-Laure Kumar, Sagar Rinaldi, Francesco Tudisco, Francesco Fortunato, Santo Majumder, Maimuna S. Luddy School of Informatics Computing and Engineering Indiana University BloomingtonIN United States Department of Computer Science Loyola University Chicago ChicagoIL United States Senseable City Laboratory Massachusetts Institute of Technology CambridgeMA United States Department of Mathematics "Tullio Levi-Civita" University of Padova Padova Italy Institute for Data Systems and Society Massachusetts Institute of Technology CambridgeMA United States Network Science Institute Northeastern University BostonMA United States School of Mathematics The University of Edinburgh Edinburgh United Kingdom School of Mathematics Gran Sasso Science Institute L’Aquila Italy Department of Pediatrics Harvard Medical School BostonMA United States Computational Health Informatics Program Boston Children’s Hospital BostonMA United States
Since the emergence of COVID-19, discussions of ongoing pandemic-related research have accounted for an unprecedented share of media coverage and debate in the public sphere1. The urgency of the pandemic forced resear... 详细信息
来源: 评论
SETS of LOW CORRELATION SEQUENCES from CYCLOTOMY
arXiv
收藏 引用
arXiv 2021年
作者: Castello, Jonathan M. Katz, Daniel J. King, Jacob M. Olavarrieta, Alain The Department of Mathematics California State University Northridge United States The Data Science Program George Washington University WashingtonDC United States The Department of Mathematics Las Positas College LivermoreCA United States
Low correlation (finite length) sequences are used in communications and remote sensing. One seeks codebooks of sequences in which each sequence has low aperiodic autocorrelation at all nonzero shifts, and each pair o... 详细信息
来源: 评论
Perturbation theory for evolution of cooperation on networks
arXiv
收藏 引用
arXiv 2022年
作者: Meng, Lingqi Masuda, Naoki Department of Mathematics University at Buffalo State University of New York BuffaloNY14260-2900 United States Computational and Data-Enabled Science and Engineering Program University at Buffalo State University of New York BuffaloNY14260-5030 United States
Network structure is a mechanism for promoting cooperation in social dilemma games. In the present study, we explore graph surgery, i.e., to slightly perturb the given network, towards a network that better fosters co... 详细信息
来源: 评论
Artificial intelligence for modelling infectious disease epidemics
收藏 引用
Nature 2025年 第8051期638卷 623-635页
作者: Kraemer, Moritz U. G. Tsui, Joseph L.-H. Chang, Serina Y. Lytras, Spyros Khurana, Mark P. Vanderslott, Samantha Bajaj, Sumali Scheidwasser, Neil Curran-Sebastian, Jacob Liam Semenova, Elizaveta Zhang, Mengyan Unwin, H. Juliette T. Watson, Oliver J. Mills, Cathal Dasgupta, Abhishek Ferretti, Luca Scarpino, Samuel V. Koua, Etien Morgan, Oliver Tegally, Houriiyah Paquet, Ulrich Moutsianas, Loukas Fraser, Christophe Ferguson, Neil M. Topol, Eric J. Duchêne, David A. Stadler, Tanja Kingori, Patricia Parker, Michael J. Dominici, Francesca Shadbolt, Nigel Suchard, Marc A. Ratmann, Oliver Flaxman, Seth Holmes, Edward C. Gomez-Rodriguez, Manuel Schölkopf, Bernhard Donnelly, Christl A. Pybus, Oliver G. Cauchemez, Simon Bhatt, Samir Pandemic Sciences Institute University of Oxford Oxford United Kingdom Department of Biology University of Oxford Oxford United Kingdom Department of Electrical Engineering and Computer Science University of California Berkeley Berkeley CA United States UCSF UC Berkeley Joint Program in Computational Precision Health Berkeley CA United States Division of Systems Virology Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Tokyo Japan Section of Epidemiology Department of Public Health University of Copenhagen Copenhagen Denmark Oxford Vaccine Group University of Oxford and NIHR Oxford Biomedical Research Centre Oxford United Kingdom Department of Epidemiology and Biostatistics Imperial College London London United Kingdom Department of Computer Science University of Oxford Oxford United Kingdom School of Mathematics University of Bristol Bristol United Kingdom MRC Centre for Global Infectious Disease Analysis School of Public Health Imperial College London London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Doctoral Training Centre University of Oxford Oxford United Kingdom Institute for Experiential AI Northeastern University MA Boston Thailand Santa Fe Institute Santa Fe NM United States World Health Organization Regional Office for Africa Brazzaville Congo WHO Hub for Pandemic and Epidemic Intelligence Health Emergencies Programme World Health Organization Berlin Germany Centre for Epidemic Response and Innovation (CERI) School for Data Science and Computational Thinking Stellenbosch University Stellenbosch South Africa African Institute for Mathematical Sciences (AIMS) South Africa Muizenberg Cape Town South Africa Genomics England London United Kingdom Scripps Research La Jolla CA United States Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland The Ethox Centre Nuffield
Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (AI) and related technologies, which are already supporting human decision making in e...
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论