Hyperuniform point patterns can be classified by the hyperuniformity scaling exponent α>0, that characterizes the power-law scaling behavior of the structure factor S(k) as a function of wave number k≡|k| in the ...
详细信息
Hyperuniform point patterns can be classified by the hyperuniformity scaling exponent α>0, that characterizes the power-law scaling behavior of the structure factor S(k) as a function of wave number k≡|k| in the vicinity of the origin, e.g., S(k)∼|k|α in cases where S(k) varies continuously with k as k→0. In this paper, we show that the spreadability is an effective method for determining α for quasiperiodic systems where S(k) is discontinuous and consists of a dense set of Bragg peaks. It has been shown in [Phys. Rev. E 104, 054102 (2021)] that, for media with finite α, the long-time behavior of the excess spreadability S(∞)−S(t) can be fit to a power law of the form t−(d−α)/2, where d is the space dimension, to accurately extract α for the continuous case. We first transform quasiperiodic and limit-periodic point patterns into two-phase media by mapping them onto packings of identical nonoverlapping disks, where space interior to the disks represents one phase and the space in exterior to them represents the second phase. We then compute the spectral density χ̃V(k) of the packings, and finally compute and fit the long-time behavior of their excess spreadabilities. Specifically, we show that the excess spreadability can be used to accurately extract α for the one-dimensional (1D) limit-periodic period-doubling chain (α=1) and the 1D quasicrystalline Fibonacci chain (α=3) to within 0.02% of the analytically known exact results. Moreover, we obtain a value of α=5.97±0.06 for the two-dimensional Penrose tiling and present plausible theoretical arguments strongly suggesting that α is exactly equal to six. We also show that, due to the self-similarity of the structures examined here, one can truncate the small-k region of the scattering information used to compute the spreadability and obtain an accurate value of α, with a small deviation from the untruncated case that decreases as the system size increases. This strongly suggests that one can obtain a good estimate of
作者:
Torquato, SalvatoreDepartment of Chemistry
Princeton Institute for the Science and Technology of Materials Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States
Understanding time-dependent diffusion processes in multiphase media is of great importance in physics, chemistry, materials science, petroleum engineering and biology. Consider the time-dependent problem of mass tran...
详细信息
Understanding time-dependent diffusion processes in multiphase media is of great importance in physics, chemistry, materials science, petroleum engineering and biology. Consider the time-dependent problem of mass transfer of a solute between two phases and assume that the solute is initially distributed in one phase (phase 2) and absent from the other (phase 1). We desire the fraction of total solute present in phase 1 as a function of time, S(t), which we call the spreadability, since it is a measure of the spreadability of diffusion information as a function of time. We derive exact direct-space formulas for S(t) in any Euclidean space dimension d in terms of the autocovariance function as well as corresponding Fourier representations of S(t) in terms of the spectral density, which are especially useful when scattering information is available experimentally or theoretically. These are singular results because they are rare examples of mass transport problems where exact solutions are possible. We derive closed-form general formulas for the short- and long-time behaviors of the spreadability in terms of crucial small- and large-scale microstructural information, respectively. The long-time behavior of S(t) enables one to distinguish the entire spectrum of microstructures that span from hyperuniform to nonhyperuniform media. For hyperuniform media, disordered or not, we show that the "excess" spreadability, S(∞) − S(t), decays to its long-time behavior exponentially faster than that of any nonhyperuniform two-phase medium, the "slowest" being antihyperuniform media. The stealthy hyperuniform class is characterized by an excess spreadability with the fastest decay rate among all translationally invariant microstructures. We obtain exact results for S(t) for a variety of specific ordered and disordered model microstructures across dimensions that span from hyperuniform to antihyperuniform media. Moreover, we establish a remarkable connection between the spreadability
We establish a scale separation of Kolmogorov width type between subspaces of a given Banach space under the condition that a sequence of linear maps converges much faster on one of the subspaces. The general techniqu...
详细信息
Neural population activity exhibits complex, nonlinear dynamics, varying in time, over trials, and across experimental conditions. Here, we develop Conditionally Linear Dynamical System (CLDS) models as a general-purp...
详细信息
We propose the coarse-grained spectral projection method (CGSP), a deep learning-assisted approach for tackling quantum unitary dynamic problems with an emphasis on quench dynamics. We show CGSP can extract spectral c...
详细信息
In previous work [Phys. Rev. X 5, 021020 (2015)], it was shown that stealthy hyperuniform systems can be regarded as hard spheres in Fourier-space in the sense that the the structure factor is exactly zero in a spheri...
详细信息
We summarize the recent progress on the determination of the charge symmetry breaking term of nuclear energy density functionals. We point out that the strength of the term determined theoretically is remarkably small...
详细信息
作者:
Torquato, SalvatoreDepartment of Chemistry
Department of Physics Princeton Institute for the Science and Technology of Materials Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States
The study of hyperuniform states of matter is an emerging multidisciplinary field, impinging on topics in the physical sciences, mathematics and biology. The focus of this work is the exploration of quantitative descr...
详细信息
The study of hyperuniform states of matter is an emerging multidisciplinary field, impinging on topics in the physical sciences, mathematics and biology. The focus of this work is the exploration of quantitative descriptors that herald when a many-particle system in d-dimensional Euclidean space Rd approaches a hyperuniform state as a function of the relevant control parameter. We establish quantitative criteria to ascertain the extent of hyperuniform and nonhyperuniform distance-scaling regimes as well as the crossover point between them in terms of the "volume" coefficient A and "surface-area" coefficient B associated with the local number variance σ2(R) for a spherical window of radius R. The larger the ratio B/A, the larger the hyperuniform scaling regime, which becomes of infinite extent in the limit B/A → ∞. To complement the known direct-space representation of the coefficient B in terms of the total correlation function h(r), we derive its corresponding Fourier representation in terms of the structure factor S(k), which is especially useful when scattering information is available experimentally or theoretically. We also demonstrate that the free-volume theory of the pressure of equilibrium packings of identical hard spheres that approach a strictly jammed state either along the stable crystal or metastable disordered branch dictates that such end states be exactly hyperuniform. Using the ratio B/A, as well as other diagnostic measures of hyperuniformity, including the hyperuniformity index H and the direct-correlation function length scale ξc, we study three different exactly solvable models as a function of the relevant control parameter, either density or temperature, with end states that are perfectly hyperuniform. Specifically, we analyze equilibrium systems of hard rods and "sticky" hard-sphere systems in arbitrary space dimension d as a function of density. We also examine low-temperature excited states of many-particle systems interacting with "steal
Label-free alignment between datasets collected at different times, locations, or by different instruments is a fundamental scientific task. Hyperbolic spaces have recently provided a fruitful foundation for the devel...
ISBN:
(纸本)9781713845393
Label-free alignment between datasets collected at different times, locations, or by different instruments is a fundamental scientific task. Hyperbolic spaces have recently provided a fruitful foundation for the development of informative representations of hierarchical data. Here, we take a purely geometric approach for label-free alignment of hierarchical datasets and introduce hyperbolic Procrustes analysis (HPA). HPA consists of new implementations of the three prototypical Procrustes analysis components: translation, scaling, and rotation, based on the Riemannian geometry of the Lorentz model of hyperbolic space. We analyze the proposed components, highlighting their useful properties for alignment. The efficacy of HPA, its theoretical properties, stability and computational efficiency are demonstrated in simulations. In addition, we showcase its performance on three batch correction tasks involving gene expression and mass cytometry data. Specifically, we demonstrate high-quality unsupervised batch effect removal from data acquired at different sites and with different technologies that outperforms recent methods for label-free alignment in hyperbolic spaces.
We prove a local existence theorem for the free boundary problem for a relativistic fluid in a fixed spacetime. Our proof involves an a priori estimate which only requires control of derivatives tangential to the boun...
暂无评论