咨询与建议

限定检索结果

文献类型

  • 118 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 130 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 92 篇 理学
    • 43 篇 数学
    • 31 篇 统计学(可授理学、...
    • 27 篇 物理学
    • 15 篇 化学
    • 13 篇 生物学
    • 12 篇 系统科学
    • 8 篇 天文学
  • 81 篇 工学
    • 27 篇 计算机科学与技术...
    • 22 篇 软件工程
    • 14 篇 生物医学工程(可授...
    • 13 篇 生物工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 控制科学与工程
    • 10 篇 光学工程
    • 10 篇 电气工程
    • 10 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 5 篇 信息与通信工程
    • 4 篇 动力工程及工程热...
    • 4 篇 交通运输工程
    • 3 篇 机械工程
  • 16 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 8 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 14 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 4 篇 图书情报与档案管...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学

主题

  • 4 篇 social networks
  • 4 篇 machine learning
  • 4 篇 dynamics
  • 3 篇 network models
  • 3 篇 social systems
  • 3 篇 tumors
  • 3 篇 scientific compu...
  • 2 篇 dynamics of netw...
  • 2 篇 complex systems
  • 2 篇 network resilien...
  • 2 篇 safety
  • 2 篇 electroencephalo...
  • 2 篇 networks & rando...
  • 2 篇 time series
  • 2 篇 stochastic syste...
  • 2 篇 game theory
  • 2 篇 potential energy
  • 2 篇 uncertainty
  • 2 篇 non-markovian pr...
  • 2 篇 network structur...

机构

  • 9 篇 computational an...
  • 8 篇 computational an...
  • 7 篇 department of ma...
  • 6 篇 department of bi...
  • 6 篇 faculty of scien...
  • 6 篇 computational an...
  • 6 篇 department of ma...
  • 6 篇 department of ma...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 department of ph...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...

作者

  • 41 篇 masuda naoki
  • 10 篇 naoki masuda
  • 5 篇 aviad levis
  • 5 篇 alan p. marscher
  • 5 篇 jirong mao
  • 5 篇 charles f. gammi...
  • 5 篇 svetlana jorstad
  • 5 篇 nicola marchili
  • 5 篇 chet ruszczyk
  • 5 篇 roberto garcía
  • 5 篇 oliver porth
  • 5 篇 daniel r. van ro...
  • 5 篇 shiro ikeda
  • 5 篇 kazuhiro hada
  • 5 篇 luis c. ho
  • 5 篇 antxon alberdi
  • 5 篇 wen-ping lo
  • 5 篇 roger brissenden
  • 5 篇 thomas p. krichb...
  • 5 篇 bradford a. bens...

语言

  • 125 篇 英文
  • 5 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Department of Mathematics and the Computational and Data-Enabled Science and Engineering Program"
130 条 记 录,以下是101-110 订阅
排序:
What we should learn from pandemic publishing
arXiv
收藏 引用
arXiv 2024年
作者: Sikdar, Satyaki Venturini, Sara Charpignon, Marie-Laure Kumar, Sagar Rinaldi, Francesco Tudisco, Francesco Fortunato, Santo Majumder, Maimuna S. Luddy School of Informatics Computing and Engineering Indiana University BloomingtonIN United States Department of Computer Science Loyola University Chicago ChicagoIL United States Senseable City Laboratory Massachusetts Institute of Technology CambridgeMA United States Department of Mathematics "Tullio Levi-Civita" University of Padova Padova Italy Institute for Data Systems and Society Massachusetts Institute of Technology CambridgeMA United States Network Science Institute Northeastern University BostonMA United States School of Mathematics The University of Edinburgh Edinburgh United Kingdom School of Mathematics Gran Sasso Science Institute L’Aquila Italy Department of Pediatrics Harvard Medical School BostonMA United States Computational Health Informatics Program Boston Children’s Hospital BostonMA United States
Since the emergence of COVID-19, discussions of ongoing pandemic-related research have accounted for an unprecedented share of media coverage and debate in the public sphere1. The urgency of the pandemic forced resear... 详细信息
来源: 评论
Unsupervised extraction of phenotypes from cancer clinical notes for association studies
arXiv
收藏 引用
arXiv 2019年
作者: Stark, Stefan G. Hyland, Stephanie L. Pradier, Melanie F. Lehmann, Kjong-Van Wicki, Andreas Perez-Cruz, Fernando Vogt, Julia E. Rätsch, Gunnar Computational Biology Program Memorial Sloan Kettering Cancer Center New York United States Tri-Institutional Ph.D. Program in Computational Biology and Medicine Weill Cornell Medicine New York United States Department of Computer Science ETH Zürich Zürich Switzerland Medical Informatics Group University Hospital Zürich Zürich Switzerland Swiss Institute for Bioinformatics Zurich Switzerland Department of Biology ETH Zürich Zürich Switzerland Department of Signal Processing and Information Theory University Carlos III in Madrid Leganés Spain School of Engineering and Applied Sciences Harvard University CambridgeMA United States Department of Biomedicine University of Basel Basel Switzerland Tumorzentrum University Hospital Basel Basel Switzerland Swiss Data Science Center ETH Zürich and EPFL Lausanne Switzerland Department of Mathematics and Computer Science University of Basel Basel Switzerland
The recent adoption of Electronic Health Records (EHRs) by healthcare providers has introduced an important source of data that provides detailed and highly specific insights into patient phenotypes over large cohorts... 详细信息
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Finding shortest and nearly shortest path nodes in large substantially incomplete networks
arXiv
收藏 引用
arXiv 2022年
作者: Kitsak, Maksim Ganin, Alexander Elmokashfi, Ahmed Cui, Hongzhu Eisenberg, Daniel A. Alderson, David L. Korkin, Dmitry Linkov, Igor Faculty of Electrical Engineering Mathematics and Computer Science Delft University of Technology Delft Netherlands Network Science Institute Northeastern University BostonMA02115 United States Department of Systems and Information Engineering University of Virginia CharlottesvilleVA22904 United States U.S. Army Engineer Research and Development Center Contractor Concord MA01742 United States Simula Metropolitan Center for Digital Engineering Oslo Norway Bioinformatics and Computational Biology Program Worcester Polytechnic Institute WorcesterMA01609 United States Institute for Genomic Medicine Columbia University Medical Center New YorkNY United States Operations Research Department Naval Postgraduate School MontereyCA93943 United States Data Science Program Worcester Polytechnic Institute WorcesterMA01609 United States Computer Science Department Worcester Polytechnic Institute WorcesterMA01609 United States U.S. Army Engineer Research and Development Center Environmental Laboratory Concord MA01742 United States
Dynamic processes on networks, be it information transfer in the Internet, contagious spreading in a social network, or neural signaling, take place along shortest or nearly shortest paths. Unfortunately, our maps of ... 详细信息
来源: 评论
26th Annual computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROscience 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论
DeePMD-kit v2: A software package for Deep Potential models
arXiv
收藏 引用
arXiv 2023年
作者: Zeng, Jinzhe Zhang, Duo Lu, Denghui Mo, Pinghui Li, Zeyu Chen, Yixiao Rynik, Marián Huang, Li'ang Li, Ziyao Shi, Shaochen Wang, Yingze Ye, Haotian Tuo, Ping Yang, Jiabin Ding, Ye Li, Yifan Tisi, Davide Zeng, Qiyu Bao, Han Xia, Yu Huang, Jiameng Muraoka, Koki Wang, Yibo Chang, Junhan Yuan, Fengbo Bore, Sigbjørn Løland Cai, Chun Lin, Yinnian Wang, Bo Xu, Jiayan Zhu, Jia-Xin Luo, Chenxing Zhang, Yuzhi Goodall, Rhys E.A. Liang, Wenshuo Singh, Anurag Kumar Yao, Sikai Zhang, Jingchao Wentzcovitch, Renata Han, Jiequn Liu, Jie Jia, Weile York, Darrin M. Weinan, E. Car, Roberto Zhang, Linfeng Wang, Han Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China College of Electrical and Information Engineering Hunan University Changsha China Yuanpei College Peking University Beijing100871 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ08540 United States Department of Experimental Physics Comenius University Mlynská Dolina F2 Bratislava842 48 Slovakia Center for Quantum Information Institute for Interdisciplinary Information Sciences Tsinghua University Beijing100084 China Center for Data Science Peking University Beijing100871 China ByteDance Research Zhonghang Plaza No. 43 North 3rd Ring West Road Haidian District Beijing China College of Chemistry and Molecular Engineering Peking University Beijing100871 China Baidu Inc. Beijing China Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University Zhejiang Hangzhou China Westlake AI Therapeutics Lab Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Hangzhou China Department of Chemistry Princeton University PrincetonNJ08544 United States SISSA Scuola Internazionale Superiore di Studi Avanzati Trieste34136 Italy Laboratory of Computational Science and Modeling Institute of Materials École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland Department of Physics National University of Defense Technology Hunan Changsha410073 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China School of Electronics Engineerin
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials (MLP) known as Deep Potential (DP) models. This package, which was released in 20... 详细信息
来源: 评论
Ten quick tips for deep learning in biology
arXiv
收藏 引用
arXiv 2021年
作者: Lee, Benjamin D. Gitter, Anthony Greene, Casey S. Raschka, Sebastian Maguire, Finlay Titus, Alexander J. Kessler, Michael D. Lee, Alexandra J. Chevrette, Marc G. Stewart, Paul Allen Britto-Borges, Thiago Cofer, Evan M. Yu, Kun-Hsing Carmona, Juan Jose Fertig, Elana J. Kalinin, Alexandr A. Signal, Beth Lengerich, Benjamin J. Triche, Timothy J. Boca, Simina M. In-Q-Tel Labs School of Engineering and Applied Sciences Harvard University Department of Genetics Harvard Medical School United States Department of Biostatistics and Medical Informatics University of Wisconsin-Madison MadisonWI United States Morgridge Institute for Research MadisonWI United States Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Biochemistry and Molecular Genetics University of Colorado School of Medicine AuroraCO United States Center for Health AI University of Colorado School of Medicine AuroraCO United States Department of Statistics University of Wisconsin Madison United States Faculty of Computer Science Dalhousie University Canada University of New Hampshire Bioeconomy.XYZ United States Department of Oncology Johns Hopkins University United States Institute for Genome Sciences University of Maryland School of Medicine United States Genomics and Computational Biology Graduate Program University of Pennsylvania United States Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania United States Wisconsin Institute for Discovery Department of Plant Pathology University of Wisconsin-Madison United States Department of Biostatistics and Bioinformatics Moffitt Cancer Center TampaFL United States Section of Bioinformatics and Systems Cardiology Klaus Tschira Institute for Integrative Computational Cardiology University Hospital Heidelberg Germany University Hospital Heidelberg Germany Lewis-Sigler Institute for Integrative Genomics Princeton University PrincetonNJ United States Graduate Program in Quantitative and Computational Biology Princeton University PrincetonNJ United States Department of Biomedical Informatics Harvard Medical School United States Department of Pathology Brigham and Women's Hospital United States Philips Healthcare CambridgeMA United States Philips Research
Machine learning is a modern approach to problem-solving and task automation. In particular, machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and us... 详细信息
来源: 评论
Integrating spatially-resolved transcriptomics data across tissues and individuals: challenges and opportunities
arXiv
收藏 引用
arXiv 2024年
作者: Guo, Boyi Ling, Wodan Kwon, Sang Ho Panwar, Pratibha Ghazanfar, Shila Martinowich, Keri Hicks, Stephanie C. Department of Biostatistics Johns Hopkins Bloomberg School of Public Health BaltimoreMD United States Division of Biostatistics Department of Population Health Sciences Weill Cornell Medicine NY United States Lieber Institute for Brain Development Johns Hopkins Medical Campus BaltimoreMD United States Solomon H. Snyder Department of Neuroscience Johns Hopkins School of Medicine BaltimoreMD United States Biochemistry Cellular and Molecular Biology Graduate Program Johns Hopkins School of Medicine BaltimoreMD United States School of Mathematics and Statistics The University of Sydney NSW2006 Australia Sydney Precision Data Science Centre University of Sydney NSW2006 Australia Charles Perkins Centre The University of Sydney NSW2006 Australia Department of Psychiatry and Behavioral Sciences Johns Hopkins School of Medicine BaltimoreMD United States Johns Hopkins Kavli Neuroscience Discovery Institute BaltimoreMD United States Department of Biomedical Engineering Johns Hopkins University BaltimoreMD United States Center for Computational Biology Johns Hopkins University BaltimoreMD United States Malone Center for Engineering in Healthcare Johns Hopkins University BaltimoreMD United States
Advances in spatially-resolved transcriptomics (SRT) technologies have propelled the development of new computational analysis methods to unlock biological insights. As the cost of generating these data decreases, the... 详细信息
来源: 评论
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
arXiv
收藏 引用
arXiv 2023年
作者: Eastman, Peter Galvelis, Raimondas Peláez, Raúl P. Abreu, Charlles R.A. Farr, Stephen E. Gallicchio, Emilio Gorenko, Anton Henry, Michael M. Hu, Frank Huang, Jing Krämer, Andreas Michel, Julien Mitchell, Joshua A. Pande, Vijay S. Rodrigues, João P.G.L.M. Rodriguez-Guerra, Jaime Simmonett, Andrew C. Singh, Sukrit Swails, Jason Turner, Philip Wang, Yuanqing Zhang, Ivy Chodera, John D. De Fabritiis, Gianni Markland, Thomas E. Department of Chemistry Stanford University StanfordCA94305 United States Acellera Labs C Dr Trueta 183 Barcelona08005 Spain C Dr. Aiguader 88 Barcelona08003 Spain Chemical Engineering Department School of Chemistry Federal University of Rio de Janeiro Rio de Janeiro68542 Brazil Redesign Science Inc. 180 Varick St. New YorkNY10014 United States EaStCHEM School of Chemistry University of Edinburgh EH9 3FJ United Kingdom Department of Chemistry and Biochemistry Brooklyn College The City University of New York NY United States Ph.D. Program in Chemistry Ph.D. Program in Biochemistry The Graduate Center of the City University of New York New YorkNY United States Stream HPC Koningin Wilhelminaplein 1 - 40601 Amsterdam1062 HG Netherlands Computational and Systems Biology Program Sloan Kettering Institute Memorial Sloan Kettering Cancer Center New YorkNY10065 United States Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Zhejiang Hangzhou310024 China Department of Mathematics and Computer Science Freie Universität Berlin Arnimallee 12 Berlin14195 Germany The Open Force Field Initiative Open Molecular Software Foundation DavisCA95616 United States Andreessen Horowitz 2865 Sand Hill Rd Menlo ParkCA94025 United States Department of Structural Biology Stanford University StanfordCA94305 United States Charité Universitätsmedizin Berlin In silico Toxicology and Structural Bioinformatics Virchowweg 6 Berlin10117 Germany Laboratory of Computational Biology National Heart Lung and Blood Institute National Institutes of Health BethesdaMD20892 United States Entos Inc. 9310 Athena Circle La Jolla CA92037 United States College of Engineering Virginia Polytechnic Institute State University BlacksburgVA24061 United States Simons Center for Computational Physical Chemistry Center for Data Science New York University 24 Waverly Place New YorkNY10004 United States T
Machine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbi... 详细信息
来源: 评论