咨询与建议

限定检索结果

文献类型

  • 118 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 130 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 92 篇 理学
    • 43 篇 数学
    • 31 篇 统计学(可授理学、...
    • 27 篇 物理学
    • 15 篇 化学
    • 13 篇 生物学
    • 12 篇 系统科学
    • 8 篇 天文学
  • 81 篇 工学
    • 27 篇 计算机科学与技术...
    • 22 篇 软件工程
    • 14 篇 生物医学工程(可授...
    • 13 篇 生物工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 控制科学与工程
    • 10 篇 光学工程
    • 10 篇 电气工程
    • 10 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 5 篇 信息与通信工程
    • 4 篇 动力工程及工程热...
    • 4 篇 交通运输工程
    • 3 篇 机械工程
  • 16 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 8 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 14 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 4 篇 图书情报与档案管...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学

主题

  • 4 篇 social networks
  • 4 篇 machine learning
  • 4 篇 dynamics
  • 3 篇 network models
  • 3 篇 social systems
  • 3 篇 tumors
  • 3 篇 scientific compu...
  • 2 篇 dynamics of netw...
  • 2 篇 complex systems
  • 2 篇 network resilien...
  • 2 篇 safety
  • 2 篇 electroencephalo...
  • 2 篇 networks & rando...
  • 2 篇 time series
  • 2 篇 stochastic syste...
  • 2 篇 game theory
  • 2 篇 potential energy
  • 2 篇 uncertainty
  • 2 篇 non-markovian pr...
  • 2 篇 network structur...

机构

  • 9 篇 computational an...
  • 8 篇 computational an...
  • 7 篇 department of ma...
  • 6 篇 department of bi...
  • 6 篇 faculty of scien...
  • 6 篇 computational an...
  • 6 篇 department of ma...
  • 6 篇 department of ma...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 department of ph...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...

作者

  • 41 篇 masuda naoki
  • 10 篇 naoki masuda
  • 5 篇 aviad levis
  • 5 篇 alan p. marscher
  • 5 篇 jirong mao
  • 5 篇 charles f. gammi...
  • 5 篇 svetlana jorstad
  • 5 篇 nicola marchili
  • 5 篇 chet ruszczyk
  • 5 篇 roberto garcía
  • 5 篇 oliver porth
  • 5 篇 daniel r. van ro...
  • 5 篇 shiro ikeda
  • 5 篇 kazuhiro hada
  • 5 篇 luis c. ho
  • 5 篇 antxon alberdi
  • 5 篇 wen-ping lo
  • 5 篇 roger brissenden
  • 5 篇 thomas p. krichb...
  • 5 篇 bradford a. bens...

语言

  • 125 篇 英文
  • 5 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Department of Mathematics and the Computational and Data-Enabled Science and Engineering Program"
130 条 记 录,以下是71-80 订阅
排序:
Unbiased Approximations for Stationary Distributions of McKean-Vlasov SDEs
arXiv
收藏 引用
arXiv 2024年
作者: Awadelkarim, Elsiddig Chada, Neil K. Jasra, Ajay Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia Department of Mathematics City University of Hong Kong Hong Kong School of Data Science The Chinese University of Hong Kong Shenzhen Shenzhen China
We consider the development of unbiased estimators, to approximate the stationary distribution of Mckean-Vlasov stochastic differential equations (MVSDEs). These are an important class of processes, which frequently a... 详细信息
来源: 评论
Opinion dynamics on tie-decay networks
arXiv
收藏 引用
arXiv 2020年
作者: Sugishita, Kashin Porter, Mason A. Beguerisse-Díaz, Mariano Masuda, Naoki Department of Mathematics State University of New York at Buffalo BuffaloNY14260-2900 United States Department of Mathematics University of California Los AngelesCA90095 United States Mathematical Institute University of Oxford OxfordOX2 6GG United Kingdom Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo BuffaloNY14260-5030 United States Faculty of Science and Engineering Waseda University Tokyo169-8555 Japan
In social networks, interaction patterns typically change over time. We study opinion dynamics on tie-decay networks in which tie strength increases instantaneously when there is an interaction and decays exponentiall... 详细信息
来源: 评论
Estimating international trade status of countries from global liner shipping networks
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Mengqiao Pan, Qian Xia, Haoxiang Masuda, Naoki School of Economics and Management Dalian University of Technology No. 2 Linggong Road Ganjingzi District Dalian City Liaoning Province116024 China Department of Mathematics University at Buffalo BuffaloNY14260-2900 United States Computational and Data-Enabled Science and Engineering Program University at Buffalo State University of New York BuffaloNY14260-5030 United States
Maritime shipping is a backbone of international trade and thus the world economy. Vessels travel from a port of one country to another on networks of ports to carry cargos, which contribute to countries’ internation... 详细信息
来源: 评论
Transient crosslinking kinetics optimize gene cluster interactions
arXiv
收藏 引用
arXiv 2018年
作者: Walker, Benjamin Taylor, Dane Lawrimore, Josh Hult, Caitlin Adalsteinsson, David Bloom, Kerry Gregory Forest, M. Department of Mathematics University of North Carolina at Chapel Hill Department of Mathematics University at Buffalo State University of New York Computational and Data Enabled Science and Engineering University at Buffalo State University of New York Department of Microbiology and Immunology University of Michigan Medical School Department of Chemical Engineering University of Michigan Departments of Applied Physical Sciences and Biomedical Engineering University of North Carolina at Chapel Hill Department of Biology University of North Carolina at Chapel Hill
Our understanding of how chromosomes structurally organize and dynamically interact has been revolutionized through the lens of long-chain polymer physics. Major protein contributors to chromosome structure and dynami... 详细信息
来源: 评论
Model reduction with memory and the machine learning of dynamical systems
arXiv
收藏 引用
arXiv 2018年
作者: Ma, Chao Wang, Jianchun Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Shenzhen518055 China Beijing Institute of Big Data Research Beijing100871 China
The well-known Mori-Zwanzig theory tells us that model reduction leads to memory effect. For a long time, modeling the memory effect accurately and efficiently has been an important but nearly impossible task in devel... 详细信息
来源: 评论
Modeling of Measurement Error in Financial Returns data
arXiv
收藏 引用
arXiv 2024年
作者: Jasra, Ajay Maama, Mohamed Mijatović, Aleksandar School of Data Science The Chinese University of Hong Kong Shenzhen China Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia Department of Statistics University of Warwick United Kingdom
In this paper we consider the modeling of measurement error for fund returns data. In particular, given access to a time-series of discretely observed log-returns and the associated maximum over the observation period... 详细信息
来源: 评论
SI-spreading-based network embedding in static and temporal networks
arXiv
收藏 引用
arXiv 2020年
作者: Zhan, Xiu-Xiu Li, Ziyu Masuda, Naoki Holme, Petter Wang, Huijuan Faculty of Electrical Engineering Mathematics and Computer Science Delft University of Technology Mekelweg 4 Delft2628 CD Netherlands Department of Mathematics University at Buffalo State University of New York Buffalo New YorkNY14260-2900 United States Computational and Data-Enabled Science and Engineering Program University at Buffalo State University of New York Buffalo New YorkNY14260-2900 United States Institute of Innovative Research Tokyo Institute of Technology Yokohama226-8503 Japan
Link prediction can be used to extract missing information, identify spurious interactions as well as forecast network evolution. Network embedding is a methodology to assign coordinates to nodes in a low-dimensional ... 详细信息
来源: 评论
Higher-order rich-club phenomenon in collaborative research grant networks
arXiv
收藏 引用
arXiv 2022年
作者: Nakajima, Kazuki Shudo, Kazuyuki Masuda, Naoki Department of Mathematical and Computing Science Tokyo Institute of Technology Meguro-ku Tokyo152-8552 Japan Department of Mathematics State University of New York at Buffalo Buffalo14260 United States Academic Center for Computing and Media Studies Kyoto University Sakyo-ku Kyoto606-8501 Japan Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo Buffalo14260 United States Faculty of Science and Engineering Waseda University Tokyo169-8555 Japan
Modern scientific work, including writing papers and submitting research grant proposals, increasingly involves researchers from different institutions. In grant collaborations, it is known that institutions involved ...
来源: 评论
Advances of machine learning in molecular modeling and simulation
arXiv
收藏 引用
arXiv 2019年
作者: Haghighatlari, Mojtaba Hachmann, Johannes Department of Chemical and Biological Engineering University at Buffalo State University of New York BuffaloNY14260 United States Computational and Data-Enabled Science and Engineering Graduate Program University at Buffalo State University of New York BuffaloNY14260 United States New York State Center of Excellence in Materials Informatics BuffaloNY14203 United States
In this review, we highlight recent developments in the application of machine learning for molecular modeling and simulation. After giving a brief overview of the foundations, components, and workflow of a typical su... 详细信息
来源: 评论
Metrics for benchmarking and uncertainty quantification: Quality, applicability, and a path to best practices for machine learning in chemistry
arXiv
收藏 引用
arXiv 2020年
作者: Vishwakarma, Gaurav Sonpal, Aditya Hachmann, Johannes Department of Chemical and Biological Engineering University at Buffalo State University of New York BuffaloNY14260 United States Computational and Data-Enabled Science and Engineering Graduate Program University at Buffalo State University of New York BuffaloNY14260 United States New York State Center of Excellence in Materials Informatics BuffaloNY14203 United States
This review aims to draw attention to two issues of concern when we set out to make machine learning work in the chemical and materials domain, i.e., statistical loss function metrics for the validation and benchmarki... 详细信息
来源: 评论