Aboard current ships, such as the DDG 51, engineering control and damage control activities are manpower intensive. It is anticipated that, for future combatants, the workload demand arising from operation of systems ...
详细信息
Aboard current ships, such as the DDG 51, engineering control and damage control activities are manpower intensive. It is anticipated that, for future combatants, the workload demand arising from operation of systems under conditions of normal steaming and during casualty response will need to be markedly reduced via automated monitoring, autonomous control, and other technology initiatives. Current DDG 51 class ships can be considered as a manpower baseline and under Condition III typical engineering control involves seven to eight watchstanders at manned stations in the Central Control Station, the engine rooms and other machinery spaces. In contrast to this manning level, initiatives such as DD 21 and the integratedengineering plant (IEP) envision a partnership between the operator and the automation system, with more and more of the operator's functions being shifted to the automation system as manning levels decrease. This paper describes some human systems integration studies of workload demand reduction and, consequently, manning reduction that can be achieved due to application of several advanced technology concepts. Advanced system concept studies in relation to workload demand are described and reviewed including. Piecemeal applications of diverse automation and remote control technology concepts to selected high driver tasks in current DDG 51 activities. Development of the reduced ship's crew by virtual presence system that will provide automated monitoring and display to operators of machinery health, compartment conditions, and personnel health. The IEP envisions the machinery control system as a provider of resources that are used by various consumers around the ship. Resource needs and consumer priorities are at all times dependent upon the ship's current mission and the availability of equipment pawnbrokers.
We describe the dynamical and bifurcational behavior of two mutually inhibitory, leaky, neural units subject to external stimulus, random noise, and "priming biases". The model describes a simple forced choi...
We describe the dynamical and bifurcational behavior of two mutually inhibitory, leaky, neural units subject to external stimulus, random noise, and "priming biases". The model describes a simple forced choice experiment and accounts for varying levels of expectation and control. By projecting the model's dynamics onto slow manifolds, using judicious linear approximations, and solving for one-dimensional (reduced) probability densities, analytical estimates are developed for reaction time distributions and shown to compare satisfactorily with "full" numerical data. A sensitivity analysis is performed and the effects of parameters assessed. The predictions are also compared with behavioral data. These results may help correlate low-dimensional models of stochastic neural networks with cognitive test data, and hence assist in parameter choices and model building.
A formulation for selecting operator and control inputs to a high fidelity dynamics model, governed by differential-algebraic equations, is presented to minimize deviation in its response relative to that of a lower f...
详细信息
A formulation for selecting operator and control inputs to a high fidelity dynamics model, governed by differential-algebraic equations, is presented to minimize deviation in its response relative to that of a lower fidelity model that is also governed by differential-algebraic equations of motion. An adjoint variable method for computing sensitivity of the error measure defined is derived and implemented in a nonlinear programming formulation that is suitable for iterative minimization of the error functional. A numerical example using a multibody mechanism is presented to demonstrate effectiveness of the method and provide insights into means for effectively formulating problems of model correlation and strategies for their solution.
B. D. Coller, P. Holmes, John Lumley; Erratum: ‘‘Interaction of adjacent bursts in the wall region’’ [Phys. Fluids 6, 954 (1994)], Physics of Fluids, Volume 9,
B. D. Coller, P. Holmes, John Lumley; Erratum: ‘‘Interaction of adjacent bursts in the wall region’’ [Phys. Fluids 6, 954 (1994)], Physics of Fluids, Volume 9,
In an era of fiscal austerity, downsizing and unforgiving pressure upon human and economic capital, it is an Augean task to identify resources for fresh and creative work. The realities of the day and the practical de...
详细信息
In an era of fiscal austerity, downsizing and unforgiving pressure upon human and economic capital, it is an Augean task to identify resources for fresh and creative work. The realities of the day and the practical demands of more immediate fleet needs can often dictate higher priorities. Yet, the Navy must avoid eating its seed corn. Exercising both technical insight and management foresight, the fleet, the R&D community, the Office of the Chief of Naval Operations (OpNav) and the product engineering expertise of the Naval Surface Warfare Center (NSWC) are joined and underway with integrated efforts to marry new, fully demonstrated technologies and operational urgencies. Defense funding today cannot sponsor all work that can be mission-justified over the long term because budgets are insufficient to support product maturation within the classical development cycle. However, by rigorous technical filtering and astute engineering of both marketplace capabilities and currently available components, it is possible in a few select cases to compress and, in effect, integrate advanced development (6.3), engineering development (6.4), weapon procurement (WPN), ship construction (SCN), operation and maintenance (O&M,N) budgetary categories when fleet criticalities and technology opportunities can happily meet. In short, 6.3 funds can be applied directly to ''ripe gateways'' so modern technology is inserted into existing troubled or aging systems, sidestepping the lengthy, traditional development cycle and accelerating practical payoffs to recurrent fleet problems. To produce such constructive results has required a remarkable convergence of sponsor prescience and engineering workforce excellence. The paper describes, extensively, the philosophy of approach, transition strategy, polling of fleet needs, technology assessment, and management team requirements. The process for culling and selecting specific candidate tasks for SHARP sponsorship (matching operational need with t
We show that the statistical properties of the large scales of the Kuramoto-Sivashinsky equation in the extended system limit can be understood in terms of the dynamical behavior of the same equation in a small finite...
A new algorithm based on spectral element discretization and non-oscillatory ideas is developed for the solution of hyperbolic partial differential equations. A conservative formulation is proposed based on cell avera...
A new algorithm based on spectral element discretization and non-oscillatory ideas is developed for the solution of hyperbolic partial differential equations. A conservative formulation is proposed based on cell averaging and reconstruction procedures, that employs a staggered grid of Gauss-Chebyshev and Gauss-Lobatto Chebyshev discretizations. The non-oscillatory reconstruction procedure is based on ideas similar to those proposed by Cai et al. (Math. Comput. 52, 389 (1989)) but employs a modified technique which is more robust and simpler in terms of determining the location and strength of a discontinuity. It is demonstrated through model problems of linear advection, inviscid Burgers equation, and one-dimensional Euler system that the proposed algorithm leads to stable, non-oscillatory accurate results. Exponential accuracy away from the discontinuity is realized for the inviscid Burgers equation example.
Numerical simulation is used to model ion etching in trilayer lithography. The simulations are capable of capturing the evolution of the boundary between two materials as well as the physically observed phonemena reac...
Numerical simulation is used to model ion etching in trilayer lithography. The simulations are capable of capturing the evolution of the boundary between two materials as well as the physically observed phonemena reactive ion etching lag and undercutting. Numerical results are compared with experimental data and a good agreement is found except close to the material interface where the slope of the surface is large. This error is attributed to a purely energy dependent yield used in the simulations.
The flow in a channel with its lower wall mounted with streamwise V-shaped riblets is simulated using a highly efficient spectral-element-Fourier method. The range of Reynolds numbers investigated is 500 to 4000, whic...
暂无评论