Damage and defects that occur in printed circuit board assembly (PCBA) often lead to the disposal of expensive components. In cases where laminate and circuitry have been removed, traditional repairs in the manufactur...
Damage and defects that occur in printed circuit board assembly (PCBA) often lead to the disposal of expensive components. In cases where laminate and circuitry have been removed, traditional repairs in the manufacturing process have not been able to return devices into service. This study examines the use of aerosol jet printing (AJP) and traditional engineering fluid dispensing (EFD) as methods to service repairs of damaged *** mount component failures on PCBAs may occur as a result of a bad solder joint or problems with the component. In order to salvage such a PCBA, the component must be physically removed from the board and a new be attached. During the removal of PCBA components, pad cratering may occur, where the pad and laminate are damaged/removed along with the component. This leaves behind a crater in place of the pad, rendering the board unrepairable and thus, unusable. Trace damage is another common failure in PCBs. A repair to either sort of damage often requires reconnections of intricate circuitry to be made. Trace repair has traditionally been serviced by soldering a wire between the undamaged regions, rerouting the connection. In the case of fine conductive traces, as seen in devices which are becoming smaller as heterogeneous packaging innovations continue to progress, traditional methods will not be able to service this sort of *** jet printing, a direct-write additive manufacturing process commonly used in flexible hybrid electronics, could save expensive PCBs by repairing cratered pads and damaged traces. The use of AJP has been successful in repairing damaged modules, however the process has not been optimized for general repairs on FR4. The use of AJP and EFD to repair damaged circuitry on FR4 laminate and to fill pad craters with copper nanoparticle ink is demonstrated. Copper ink structures are uniformly sintered to achieve a solderable surface and good adhesion to the exposed laminate and remaining copper on the PCB. P
Drawing inspiration from the recent breakthroughs in the Na2BaCo(PO4)2 quantum magnet, renowned for its spin supersolidity phase and its potential for solid-state cooling applications, our study delves into the interp...
详细信息
Drawing inspiration from the recent breakthroughs in the Na2BaCo(PO4)2 quantum magnet, renowned for its spin supersolidity phase and its potential for solid-state cooling applications, our study delves into the interplay among lattice, spin, and orbital degrees of freedom within this compound. Using temperature-, field-, and pressure-dependent Raman scattering techniques, we present experimental evidence revealing crystal-electric-field (CEF) excitations, alongside the interplay of CEF-phonon interactions. We performed density functional theory calculations for the phonon frequencies and compared them with the experimentally observed modes. In addition, our experiments elucidated electronic transitions from j1/2 to j3/2 and from j1/2 to j5/2, with energy levels closely aligned with theoretical predictions based on point-charge models. Moreover, the application of a magnetic field and pressure revealed Zeeman splittings characterized by Landé-g factors as well as the CEF-phonon resonances. The anomalous shift in the coupled peak at low temperatures originated from the hybridization of CEF and phonon excitations due to their close energy proximity and shared symmetry. These findings constitute a significant step towards unraveling the fundamental properties of this exotic quantum material for future research in fundamental physics or engineering application.
It has long been known that, fundamentally different from a large body of rarefied gas, when a Knudsen gas is immersed in a thermal bath, it may never reach thermal equilibrium. The root cause is nonchaoticity: as the...
详细信息
The urgent need for sustainable energy sources has fuelled research into alternative power generation technologies. Among these, hydrogen fuel cells have emerged as promising candidates due to their high energy effici...
详细信息
ISBN:
(数字)9798331542559
ISBN:
(纸本)9798331542566
The urgent need for sustainable energy sources has fuelled research into alternative power generation technologies. Among these, hydrogen fuel cells have emerged as promising candidates due to their high energy efficiency and zero-emission profile. This study presents a review on hydrogen energy and fuel cell. The design principles for fuel cells, hydrogen production methods, hydrogen storage technologies and the integration of fuel cells into power systems have been discussed. The review concludes with a discussion on technological advances in fuel cell materials and environmental impacts/sustainability of hydrogen fuel cells.
Background: Fungicides, like carbendazim, have effects on male fertility. There have been sufficient studies conducted on certain chemical compounds to indicate a selective action at the epididymis level. To prevent c...
详细信息
Supercrystalline nanocomposites (SCNCs) are inorganic-organic hybrid materials with a unique periodic nanostructure, and thus they have been gaining growing attention for their intriguing functional properties and par...
详细信息
This article offers a distinct survey of a multiphase flow through a uniform channel. The electro-osmotic phenomenon is the main source of the flow. Fourth-grade fluid model is used as the base liquid which is suspend...
详细信息
Short-range order (SRO) alters the mechanical properties of technologically relevant structuralmaterials such as medium/high entropy alloys and austenitic stainless steels. In thisstudy, we present a generalized spin ...
详细信息
In this study, gallium oxide (Ga2O3) nanorods were deposited onto an indium tin oxide (ITO) glass substrate to develop a real-time living cell viability sensor. Ga2O3 nanorods had characteristics of cell population se...
详细信息
The extensive commercialization of practical solid-state batteries (SSBs) necessitates the development of high-loading solid-state cathodes with fast charging capability. However, electrochemical kinetics are severely...
详细信息
The extensive commercialization of practical solid-state batteries (SSBs) necessitates the development of high-loading solid-state cathodes with fast charging capability. However, electrochemical kinetics are severely delayed in thick cathodes due to tortuous ion transport pathways and slow solid-solid ion diffusion, which limit the achievable capacity of SSBs at high current densities. In this work, we propose a conductivity gradient cathode with low-tortuosity to enable facile ion transport and counterbalance ion concentration gradient, thereby overcoming the kinetic limitations and achieving fast charging capabilities in thick cathodes. The LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathodes deliver a room-temperature (RT) capacities of 147 and 110 mAh g −1 at 5 C and 10 C, respectively, and meanwhile achieve a RT areal capacity of 3.3 mAh cm −2 at 3 C, enabling SSBs simultaneously high energy and power densities. The universality of this strategy is demonstrated in LiFePO 4 cathodes, providing a novel solution for fast charging and large-scale application of high-loading SSBs.
暂无评论