This letter shows the ability to perform character-ization of the strain field in an aluminium bicrystal subject to plane strain condition induced by micro scale laser shock peening. Intensity contrast method, previou...
详细信息
A method to fabricate complex structures on non-planar surfaces by utilizing a transfer method is presented. 3-dimensional and high-aspect-ratio microelectromechanical systems (MEMS) structures are transferred to flex...
详细信息
It has been a challenge to achieve high efficiency organic photovoltaics (OPV) that absorb long wavelength solar radiation without incurring unacceptable reductions in open circuit voltage (Voc) or charge separation e...
详细信息
Here we report the fabrication of high conductive and large surface-area 3D pillar graphene nanostructures (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils and directly employed for...
详细信息
Here we report the fabrication of high conductive and large surface-area 3D pillar graphene nanostructures (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils and directly employed for the application in electrochemical double layer capacitance (EDLC) supercapacitor. The fabricated supercapacitor based on PGN films with excellent mechanical flexibility and electrical conductivity has high energy storage capability. The PGN films which were one-step synthesized on flexible copper foil (25 um) by CVD process exhibit high conductivity with sheet resistance as low as 1.6 ohm per square and high mechanical flexibility. The fabricated EDLC supercapacitor based on high surface-area PGN electrodes (563m 2 /g) shows high performance with high specific capacitance of 330F/g and energy density as high as 45.8Wh/kg. All of these make this 3D graphene/CNTs hybrid carbon nanostructures highly attractive material for high performance supercapacitor and other energy storage material.
A capacitance relative humidity (RH) sensor is described that has a design, construction, and material composition that result in an inexpensive and robust sensor. This sensor has a multilayer, free-standing film cons...
A capacitance relative humidity (RH) sensor is described that has a design, construction, and material composition that result in an inexpensive and robust sensor. This sensor has a multilayer, free-standing film construction. It consists of a humidity sensitive polyimide (PI) dielectric core and conductive layers consisting of carbon filled polysulfone on each side of the polyirnide film to form a capacitor. The polyimide used is a BPDA-ODA type, and replaces a PMDA-ODA type polyimide used in a previous version of this sensor. The BPDA-ODA sensor has a nominal capacitance of 200 pF and a nominal sensitivity of 13% at 100% RH. The characteristics of this humidity sensor are discussed and compared to the characteristics of the PMDA-ODA type sensor. Characteristics considered include the PI film moisture uptake and water vapor transmission, and the sensors’ sensitivity to relative humidity, frequency response, and aging at 85°C/85% RH. The dual-state sorption model and free volume calculations are used to demonstrate that observed differences in the film are due to differences in chemical composition between the films.
We report the enhanced interface properties between passivation layers and InSb by using remote PECVD system. SiO2 and Si3N4 layers deposited by remote PECVD showed lower interface trap densities than layers deposited...
We report the enhanced interface properties between passivation layers and InSb by using remote PECVD system. SiO2 and Si3N4 layers deposited by remote PECVD showed lower interface trap densities than layers deposited by normal PECVD. SiO2 layers deposited by remote PECVD showed 7.1×1011 cm−2 eV−1 of interface trap density at midgap which is slightly lower than SiO2 layers deposited by PECVD. Si3N4 layers deposited by remote PECVD showed 1.6∼1.7×1012 cm−2 eV−1 at midgap which is 3 times lower than Si3N4 layers deposited by PECVD. Interface properties of SiO2 are superior to that of Si3N4 in both case of PECVD and remote PECVD. To investigate the interface properties between SiO2 and InSb, X‐ray photoelectron spectroscopy was conducted. Indium and antimony oxide phases were found at the interface and these oxide phases could act as the origin of interface traps.
This letter shows the ability to perform characterization of the strain field in an aluminium bicrystal subject to plane strain condition induced by micro scale laser shock peening. Intensity contrast method, previous...
详细信息
In recent years, there has been an increasing interest in thermal properties of materials. This arises mostly from the practical needs of heat removal and thermal management, which have now become critical issues for ...
详细信息
In recent years, there has been an increasing interest in thermal properties of materials. This arises mostly from the practical needs of heat removal and thermal management, which have now become critical issues for the continuing progress in electronic and optoelectronic industries. Another motivation for the study of thermal properties at nanoscale is from a fundamental science perspective. Thermal conductivity of different allotropes of carbon materials span a uniquely large range of values with the highest in graphene and carbon nanotube and the lowest in amorphous or disordered carbon. Here we describe the thermal properties of graphene and carbon-based materials and analyze the prospects of applications of carbon materials in thermal management.
Film chemistry control issues, as well as key properties of polymers synthesized under pulsed plasma conditions, are discussed. Distinctions between pulsed and continuous wave plasmas are examined, particularly as the...
Film chemistry control issues, as well as key properties of polymers synthesized under pulsed plasma conditions, are discussed. Distinctions between pulsed and continuous wave plasmas are examined, particularly as they relate to differences in the energy efficiency of film formation rates and to the range of available power inputs. Film stabilities, with special reference to polymers formed under very low power input conditions, are considered. Finally, selected applications involving use of the inherently high film chemistry controllability made available by the variable duty cycle pulsed plasma technique are described.
Yttrium silicate activated with Ce3+, (Y1−xCex)2SiO5, has been found to be an efficient phosphor that can potentially be used as the blue-emitting component in field emission flat panel displays. This highly refractor...
Yttrium silicate activated with Ce3+, (Y1−xCex)2SiO5, has been found to be an efficient phosphor that can potentially be used as the blue-emitting component in field emission flat panel displays. This highly refractory powder can be synthesized by combustion synthesis, a low cost technique used to fabricate multicomponent oxide powders in a single step process. The effect of activator concentration and post-synthesis annealing was examined on the fluorescent properties. The powders were found to be monoclinic space group P21/c in the as-synthesized state, and transformed to monoclinic space group C2/c after annealing. The maximum luminous emission intensity was reached after a one hour anneal at 1350°C for x=0.0075, with the peak Ce3+ emission wavelength between 420 and 450 nm. When co-doped with Gd3+, no increase in the emission intensity was observed.
暂无评论