The simplex algorithm is a widely used method for solving a linear programming problem (LP) which is first presented by George B. Dantzig. One of the important steps of the simplex algorithm is applying an appropriate...
详细信息
ISBN:
(纸本)9789881925336
The simplex algorithm is a widely used method for solving a linear programming problem (LP) which is first presented by George B. Dantzig. One of the important steps of the simplex algorithm is applying an appropriate pivot rule, the rule to select the entering variable. An effective pivot rule can lead to the optimal solution of LP with the small number of iterations. In a minimization problem, Dantzig's pivot rule selects an entering variable corresponding to the most negative reduced cost. The concept is to have the maximum improvement in the objective value per unit step of the entering variable. However, in some problems, Dantzig's rule may visit a large number of extreme points before reaching the optimal solution. In this paper, we propose a pivot rule that could reduce the number of such iterations over the Dantzig's pivot rule. The idea is to have the maximum improvement in the objective value function by trying to block a leaving variable that makes a little change in the objective function value as much as possible. Then we test and compare the efficacy of this rule with Dantzig' original rule.
We study the structural evolution of Sr3Ir2O7 as a function of pressure using x-ray diffraction. At a pressure of 54 GPa at room temperature, we observe a first-order structural phase transition, associated with a cha...
详细信息
We study the structural evolution of Sr3Ir2O7 as a function of pressure using x-ray diffraction. At a pressure of 54 GPa at room temperature, we observe a first-order structural phase transition, associated with a change from tetragonal to monoclinic symmetry and accompanied by a 4% volume collapse. Rietveld refinement of the high-pressure phase reveals a novel modification of the Ruddlesden-Popper structure, which adopts an altered stacking sequence of the perovskite bilayers. As the positions of the oxygen atoms could not be reliably refined from the data, we use density functional theory (local-density approximation+U+spin orbit) to optimize the crystal structure and to elucidate the electronic and magnetic properties of Sr3Ir2O7 at high pressure. In the low-pressure tetragonal phase, we find that the in-plane rotation of the IrO6 octahedra increases with pressure. The calculations further indicate that a bandwidth-driven insulator-metal transition occurs at ∼20 GPa, along with a quenching of the magnetic moment. In the high-pressure monoclinic phase, structural optimization resulted in complex tilting and rotation of the oxygen octahedra and strongly overlapping t2g and eg bands. The t2g bandwidth renders both the spin-orbit coupling and electronic correlations ineffectual in opening an electronic gap, resulting in a robust metallic state for the high-pressure phase of Sr3Ir2O7.
Effects of a continuous magnetic field in the direction of streaming on the incompressible Kelvin–Helmholtz instability (KHI) are investigated by solving the linear ideal magnetohydrodynamic equations. It is found ...
详细信息
Effects of a continuous magnetic field in the direction of streaming on the incompressible Kelvin–Helmholtz instability (KHI) are investigated by solving the linear ideal magnetohydrodynamic equations. It is found that the frequency of the KHI is not influenced by the magnetic field. The magnetic field strength effect decreases the linear growth of the KHI, while the magnetic field gradient scale length effect increases its linear growth. The KHI can even be completely suppressed when the magnetic field is strong enough. The linear growth rate approaches a maximum when the magnetic field gradient scale length is large enough.
We demonstrate that the dynamic information and the spatial structure of a Rydberg wave packet formed by two neighboring Rydberg states can be simultaneously probed by harmonic spectra in a few-cycle laser pulse, wher...
详细信息
We demonstrate that the dynamic information and the spatial structure of a Rydberg wave packet formed by two neighboring Rydberg states can be simultaneously probed by harmonic spectra in a few-cycle laser pulse, where the Rydberg wave packet is produced by a pump laser field. By controlling the time delay of the pump-probe laser pulses, the harmonic spectra present a periodic variation, which directly illustrates the electron oscillation between the two neighboring Rydberg states. Specifically, by taking advantage of the periodic variation of the harmonic efficiency and the dip structure in the spectrum, one can detect the spatial characteristics and the dynamic information of the initial Rydberg wave packet.
In this paper, we consider the three-dimensional isentropic compressible fluid models of Korteweg type, called the compressible Navier-Stokes-Korteweg system. We mainly present the vanishing capillarity limit of the s...
详细信息
We derive an effective potential for binary black hole (BBH) spin precession at second post-Newtonian order. This effective potential allows us to solve the orbit-averaged spin-precession equations analytically for ar...
详细信息
We derive an effective potential for binary black hole (BBH) spin precession at second post-Newtonian order. This effective potential allows us to solve the orbit-averaged spin-precession equations analytically for arbitrary mass ratios and spins. These solutions are quasiperiodic functions of time: after a fixed period, the BBH spins return to their initial relative orientations and jointly precess about the total angular momentum by a fixed angle. Using these solutions, we classify BBH spin precession into three distinct morphologies between which BBHs can transition during their inspiral. We also derive a precession-averaged evolution equation for the total angular momentum that can be integrated on the radiation-reaction time and identify a new class of spin-orbit resonances that can tilt the direction of the total angular momentum during the inspiral. Our new results will help efforts to model and interpret gravitational waves from generic BBH mergers and predict the distributions of final spins and gravitational recoils.
We conduct a study on heat conduction through coupled Fermi-Pasta-Ulam (FPU) chains by using classical molecular dynamics simulations. Our attention is dedicated to showing how the phonon transport is affected by the ...
详细信息
We conduct a study on heat conduction through coupled Fermi-Pasta-Ulam (FPU) chains by using classical molecular dynamics simulations. Our attention is dedicated to showing how the phonon transport is affected by the interchain coupling. It has been well accepted that the heat conduction could be impeded by the interchain interaction due to the interface phonon scattering. However, recent theoretical and experimental studies suggest that the thermal conductivity of nanoscale materials can be counterintuitively enhanced by the interaction with the substrate. In the present paper, by consecutively varying the interchain coupling intensity, we observed both enhancement and suppression of thermal transport through the coupled FPU chains. For weak interchain couplings, it is found that the heat flux increases with the coupling intensity, whereas in the case of strong interchain couplings, the energy transport is found to be suppressed by the interchain interaction. Based on the phonon spectral energy density method, we attribute the enhancement of the energy transport to the excited phonon modes (in addition to the intrinsic phonon modes), while the upward shift of the high-frequency phonon branch and the interface phonon-phonon scattering account for the suppressed heat conduction.
Controlling segregation is both a practical and a theoretical challenge. Using a novel drum design comprising concave and convex geometry, we explore, through the application of both discrete particle simulations and ...
详细信息
Controlling segregation is both a practical and a theoretical challenge. Using a novel drum design comprising concave and convex geometry, we explore, through the application of both discrete particle simulations and positron emission particle tracking, a means by which radial size segregation may be used to drive axial segregation, resulting in an order of magnitude increase in the rate of separation. The inhomogeneous drum geometry explored also allows the direction of axial segregation within a binary granular bed to be controlled, with a stable, two-band segregation pattern being reliably and reproducibly imposed on the bed for a variety of differing system parameters. This strong banding is observed to persist even in systems that are highly constrained in the axial direction, where such segregation would not normally occur. These findings, and the explanations provided of their underlying mechanisms, could lead to radical new designs for a broad range of particle processing applications but also may potentially prove useful for medical and microflow applications.
We analyze the magnetic form factor of Cu2+ in low-dimensional quantum magnets by taking the metal-ligand hybridization into account explicitly. In this analysis, we use the form of magnetic Wannier orbitals, derived ...
详细信息
We analyze the magnetic form factor of Cu2+ in low-dimensional quantum magnets by taking the metal-ligand hybridization into account explicitly. In this analysis, we use the form of magnetic Wannier orbitals, derived from first-principles calculations, and identify contributions of different atomic sites. We demonstrate that covalency of metal-ligand interactions has a strong effect on the magnetic form factor and must be taken into account in the evaluation of magnetic neutron scattering. The use of covalent form factors facilitates quantitative description of inelastic neutron-scattering data for BaCuSi2O6 that would not be possible when ionic form factors are used. We also propose easy-to-use approximations of the partial orbital contributions to the magnetic form factor in order to give microscopic explanation for the results obtained in previous first-principles studies.
暂无评论