In this paper, we review various LTPS backplane technologies based on laser-crystallization and other related methods that have been applied to AMLCD and AMOLED displays. The TFT performances obtained by different mel...
详细信息
ISBN:
(纸本)9781618390967
In this paper, we review various LTPS backplane technologies based on laser-crystallization and other related methods that have been applied to AMLCD and AMOLED displays. The TFT performances obtained by different melt-mediated crystallization methods with excimer laser and solid phase crystallization will be compared. The technical issues of the image quality and the resolution will be discussed.
The random transitions of ion channels between conducting and nonconducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling the states of ion cha...
详细信息
The random transitions of ion channels between conducting and nonconducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling the states of ion channels nonlinearly couples continuous-time Markov chains to a differential equation for voltage. Beginning with the work of R. F. Fox and Y.-N. Lu [Phys. Rev. E 49, 3421 (1994)], there have been attempts to generate simpler models that use stochastic differential equation (SDEs) to approximate the stochastic spiking activity produced by Markov chain models. Recent numerical investigations, however, have raised doubts that SDE models can capture the stochastic dynamics of Markov chain models.
By using the most sensitive two-point correlation functions introduced to date, we reconstruct the microstructures of two-phase random media with heretofore unattained accuracy. Such media arise in a host of contexts,...
详细信息
By using the most sensitive two-point correlation functions introduced to date, we reconstruct the microstructures of two-phase random media with heretofore unattained accuracy. Such media arise in a host of contexts, including porous and composite media, ecological structures, biological media, and astrophysical structures. The aforementioned correlation functions are special cases of the so-called canonical n-point correlation function Hn and generalize the ones that have been recently employed to advance our ability to reconstruct complex microstructures [Y. Jiao, F. H. Stillinger, and S. Torquato, Proc. Natl. Acad. Sci. 106, 17634 (2009)]. The use of these generalized correlation functions is tantamount to dilating or eroding a reference phase of the target medium and incorporating the additional topological information of the modified media, thereby providing more accurate reconstructions of percolating, filamentary, and other topologically complex microstructures. We apply our methods to a multiply connected “donut” medium and a dilute distribution of “cracks” (a set of essentially zero measure), demonstrating improved accuracy in both cases with implications for higher-dimensional and biconnected two-phase systems. The high information content of the generalized two-point correlation functions suggests that it would be profitable to explore their use to characterize the structural and physical properties of not only random media, but also molecular systems, including structural glasses.
The densest binary sphere packings have historically been very difficult to determine. The only rigorously known packings in the α−x plane of sphere radius ratio α and relative concentration x are at the Kepler lim...
详细信息
The densest binary sphere packings have historically been very difficult to determine. The only rigorously known packings in the α−x plane of sphere radius ratio α and relative concentration x are at the Kepler limit α=1, where packings are monodisperse. Utilizing an implementation of the Torquato-Jiao sphere-packing algorithm [S. Torquato and Y. Jiao, Phys. Rev. E 82, 061302 (2010)], we present the most comprehensive determination to date of the phase diagram in (α,x) for the densest binary sphere packings. Unexpectedly, we find many distinct new densest packings.
The influences of σ^* and Ф mesons, temperature and coupling constants of nucleons on the moment of inertia of the proto neutron star (PNS) are examined in the framework of relativistic mean field theory for the ...
详细信息
The influences of σ^* and Ф mesons, temperature and coupling constants of nucleons on the moment of inertia of the proto neutron star (PNS) are examined in the framework of relativistic mean field theory for the baryon octet {n, p, A, ∑^-, ∑^,∑^+,^-, ^0} system. It is found that, compared with that without considering σ^* and Ф mesons, the moment of inertia decreases. It is also found that the higher the temperature, the larger the incompressibility and symmetry energy coefficient, and the larger the moment of inertia of a PNS. The influence of temperature and coupling constants of the nucleons on the moment of inertia of a PNS is larger than that of the σ^* and Ф mesons.
A model of phase-separation kinetics in systems exposed to energetic particle irradiation has been extended to include the effects of mobile dislocations. It is shown that when dislocations are allowed to participate ...
详细信息
A model of phase-separation kinetics in systems exposed to energetic particle irradiation has been extended to include the effects of mobile dislocations. It is shown that when dislocations are allowed to participate in the decomposition reaction, phase separation can occur at temperatures above the coherent spinodal, which is in agreement with several experiments on irradiated alloys. A linear stability analysis of the governing kinetic equations is performed and three regimes of microstructural evolution are identified within the parameter space of damage cascade size vs incident flux: complete phase separation, solid-solution behavior, and compositional patterning. In addition, numerical simulations of the evolving dislocation density and composition fields are performed. The numerical results provide the amplitude and wavelength of the stable patterns that can form under irradiation and elucidate the role of misfit dislocations in reducing the coherency strain due to atomic size mismatch.
X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic lengt...
详细信息
X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.
作者:
A. FratalocchiA. ArmaroliS. TrilloPRIMALIGHT
Faculty of Electrical Engineering Applied Mathematics and Computational Science King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia Department of Physics
Sapienza University of Rome I-00185 Rome Italy Dipartimento di Ingegneria
Università di Ferrara Via Saragat 1 I-44122 Ferrara Italy
We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining...
详细信息
We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time-reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schrödinger equation.
We observe strong signatures of spin flips in quantum rings exposed to external magnetic fields in the Coulomb blockade regime. The signatures appear as a pattern of lines corresponding to local reduction of conductan...
详细信息
We observe strong signatures of spin flips in quantum rings exposed to external magnetic fields in the Coulomb blockade regime. The signatures appear as a pattern of lines corresponding to local reduction of conductance, and they cover a large range of magnetic fields and number of electrons. The sequence of lines, as well as other features in the conductance, can be captured by many-electron calculations within density-functional theory. The calculations show that most lines in the pattern correspond to sequential spin flips between filling factors 2 and 1. We believe that the ability to probe individual spin flips provides an important step toward precise spin control in quantum ring devices.
In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress c...
详细信息
In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress chaos to unstable focuses and unstable periodic orbits. To overcome the topological limitation that the saddle-type steady state cannot be stabilized, an adaptive control based on LaSalle's invariance principle is used to control chaos to unstable equilibrium (i.e. saddle point, focus, node, etc.). The control technique does not require any computer analysis of the system dynamics, and it operates without needing to know any explicit knowledge of the desired steady-state position.
暂无评论