Almost all studies of the densest particle packings consider convex particles. Here, we provide exact constructions for the densest known two-dimensional packings of superdisks whose shapes are defined by |x1|2p+|x2|2...
详细信息
Almost all studies of the densest particle packings consider convex particles. Here, we provide exact constructions for the densest known two-dimensional packings of superdisks whose shapes are defined by |x1|2p+|x2|2p≤1 and thus contain a large family of both convex (p≥0.5) and concave (0
We have developed a virtual integration environment (VIE) for the development of neural prosthetic systems. This paper, the second of two companion articles, describes the use of the VIE as a common platform for the i...
详细信息
We have developed a virtual integration environment (VIE) for the development of neural prosthetic systems. This paper, the second of two companion articles, describes the use of the VIE as a common platform for the implementation of neural decode algorithms. In this paper, a linear filter decode and a recursive Bayesian algorithm are implemented as separate signal analysis modules of the VIE for the real-time decode of end effector trajectory. The process of implementing each algorithm is described and the real-time behavior as well as computational cost for each algorithm is examined. This is the first report of the real-time implementation of the Mixture of Trajectory Models decode [10]. These real-time algorithms can be easily interfaced with pre-existing modules of the VIE to control simulated and real devices.
A detailed temporal and spatiotemporal stability analysis of two-layer falling films with density and viscosity stratification is performed by using the Chebyshev collocation method to solve the full system of linear ...
详细信息
A detailed temporal and spatiotemporal stability analysis of two-layer falling films with density and viscosity stratification is performed by using the Chebyshev collocation method to solve the full system of linear stability equations. From the neutral curves Re(k) for the surface mode and the interface mode of instability, obtained for different density ratios γ of the upper layer to the lower layer, it is found that smaller density ratios make the surface mode and the short-wave interface mode much more stable, and can even make the short-wave interfacial instability disappear. Moreover, through the study of the local growth rates of the spatiotemporal instability as a function of the ray velocity V, it is found that for not too small incline angles like θ=0.2, the two-layer flow is always convectively unstable, and there is a transition between long- and short-wave instabilities which is determined by the Briggs-Bers collision criterion. Due to the existence of the absolute Rayleigh-Taylor instability for γ>0 and θ=0, a transition from convective to absolute instability can be detected at small incline angles, and the corresponding boundary curves are plotted for different Reynolds numbers, viscosity ratios, and incline angles. It is found that there exists a limit Reynolds number above which the two-layer film flow can only be convectively unstable for a fixed small incline angle. The spatial amplification properties of the convective waves are finally presented for both surface and interface modes.
In this article, the globally bounded in-time pointwise estimate of solutions to the simplified Keller-Segel system modelling chemotaxis are derived. Moreover, a local existence theorem is obtained.
In this article, the globally bounded in-time pointwise estimate of solutions to the simplified Keller-Segel system modelling chemotaxis are derived. Moreover, a local existence theorem is obtained.
We develop a semiclassical model to describe the non-sequential double ionization of aligned diatomic molecules in an intense linearly polarized field. It is found that in the tunnelling regime, the oriented molecule ...
详细信息
We develop a semiclassical model to describe the non-sequential double ionization of aligned diatomic molecules in an intense linearly polarized field. It is found that in the tunnelling regime, the oriented molecule shows geometric effects on double ionization process when aligned parallel and perpendicular to the external field. Our results are qualitatively consistent with the recent experimental observations.
We consider three-dimensional convection of an incompressible fluid saturated in a parallelepiped with a porous medium. A mimetic finite-difference scheme for the Darcy convection problem in the primitive variables is...
Based on the Dirac-Fork-Slater method combined with the multichannel quantum defect theory, the recombination processes of electrons into bare uranium ions (U92+) are investigated in the relative energy range close...
详细信息
Based on the Dirac-Fork-Slater method combined with the multichannel quantum defect theory, the recombination processes of electrons into bare uranium ions (U92+) are investigated in the relative energy range close to zero, and the x-ray spectrum emitted in the direct radiative recombination and cascades processes are simulated. Compared with the recent measurement, it is found that the rate enhancement comes from the additional populations on high Rydberg states. These additional populations may be produced by other recombination mechanisms, such as the external electric-magnetic effects and the many-body correlation effects, which still remains an open problem.
We propose two sets of initial conditions for magnetohydrodynamics (MHD) in which both the velocity and the magnetic fields have spatial symmetries that are preserved by the dynamical equations as the system evolves. ...
详细信息
We propose two sets of initial conditions for magnetohydrodynamics (MHD) in which both the velocity and the magnetic fields have spatial symmetries that are preserved by the dynamical equations as the system evolves. When implemented numerically they allow for substantial savings in CPU time and memory storage requirements for a given resolved scale separation. Basic properties of these Taylor-Green flows generalized to MHD are given, and the ideal nondissipative case is studied up to the equivalent of 20483 grid points for one of these flows. The temporal evolution of the logarithmic decrements δ of the energy spectrum remains exponential at the highest spatial resolution considered, for which an acceleration is observed briefly before the grid resolution is reached. Up to the end of the exponential decay of δ, the behavior is consistent with a regular flow with no appearance of a singularity. The subsequent short acceleration in the formation of small magnetic scales can be associated with a near collision of two current sheets driven together by magnetic pressure. It leads to strong gradients with a fast rotation of the direction of the magnetic field, a feature also observed in the solar wind.
Kinetic Monte Carlo(KMC)is a stochastic model used to simulate crystal ***,most KMC models rely on a pre-defined lattice that neglects dislocations,lattice mismatch and strain *** this paper,we investigate the use of ...
详细信息
Kinetic Monte Carlo(KMC)is a stochastic model used to simulate crystal ***,most KMC models rely on a pre-defined lattice that neglects dislocations,lattice mismatch and strain *** this paper,we investigate the use of a 3D off-lattice KMC *** test this method by investigating impurity diffusion in a strained FCC *** faster than a molecular dynamics simulation,the most general implementation of off-lattice KMC is much slower than a lattice-based *** improved procedure is achieved for weakly strained systems by precomputing approximate saddle point locations based on unstrained lattice *** this way,one gives up some of the flexibility of the general method to restore some of the computational speed of lattice-based *** addition to providing an alternative approach to nano-materials simulation,this type of simulation will be useful for testing and calibrating methods that seek to parameterize the variation in the transition rates for lattice-based KMC using continuum modeling.
暂无评论