Previous Monte Carlo investigations by Wojciechowski et al. have found two unusual phases in two-dimensional systems of anisotropic hard particles: a tetratic phase of fourfold symmetry for hard squares [Comput. Meth...
Previous Monte Carlo investigations by Wojciechowski et al. have found two unusual phases in two-dimensional systems of anisotropic hard particles: a tetratic phase of fourfold symmetry for hard squares [Comput. Methods Sci. Tech. 10, 235 (2004)], and a nonperiodic degenerate solid phase for hard-disk dimers [Phys. Rev. Lett. 66, 3168 (1991)]. In this work, we study a system of hard rectangles of aspect ratio two, i.e., hard-square dimers (or dominos), and demonstrate that it exhibits phases with both of these unusual properties. The liquid shows quasi-long-range tetratic order, with no nematic order. The solid phase we observe is a nonperiodic tetratic phase having the structure of a random tiling of the square lattice with dominos with the well-known degeneracy entropy 1.79kB per particle. Our simulations do not conclusively establish the thermodynamic stability of this orientationally disordered solid; however, there are strong indications that this phase is glassy. Our observations are consistent with a two-stage phase transition scenario developed by Kosterlitz and co-workers with two continuous phase transitions, the first from isotropic to tetratic liquid, and the second from tetratic liquid to solid. We obtain similar results with both a classical Monte Carlo method using true rectangles and a novel molecular dynamics algorithm employing rectangles with rounded corners.
The equilibrium shapes of biological structures as diverse as plant tendrils and bacterial filaments can be altered by externally imposed stresses of sufficient duration. We study the simplest model for this morphoela...
详细信息
The equilibrium shapes of biological structures as diverse as plant tendrils and bacterial filaments can be altered by externally imposed stresses of sufficient duration. We study the simplest model for this morphoelasticity—a filament whose intrinsic curvatures relax to the local curvatures—and illustrate its properties in the context of dynamic Euler buckling and writhing. When a thrust or twist is ramped in time the effective elastic properties of the filament depend on the load rate. Slow ramps interrupted by removal of the external forces can leave in equilibrium any of a whole continuum of buckled shapes. Morphoelastic relaxation can also allow a filament to bypass a bifurcation.
Recent experiments have shown large-scale dynamic coherence in suspensions of the bacterium B. subtilis, characterized by quorum polarity, collective parallel swimming of cells. To probe mechanisms leading to this, we...
详细信息
Recent experiments have shown large-scale dynamic coherence in suspensions of the bacterium B. subtilis, characterized by quorum polarity, collective parallel swimming of cells. To probe mechanisms leading to this, we study the response of individual cells to steric stress, and find that they can reverse swimming direction at spatial constrictions without turning the cell body. The consequences of this propensity to flip the flagella are quantified by measurements of the inward and outward swimming velocities, whose asymptotic values far from the constriction show near perfect symmetry, implying that “forwards” and “backwards” are dynamically indistinguishable, as with E. coli.
We show that the d-band of a transition metal surface induces intra-atomic hybridization of an atom in its vicinity. It is demonstrated that such hybridization can have a profound influence on the resonance width and ...
We show that the d-band of a transition metal surface induces intra-atomic hybridization of an atom in its vicinity. It is demonstrated that such hybridization can have a profound influence on the resonance width and hence lifetime of the atomic ionization level. The degree of Li s−p hybridization is found to be directly correlated to the overlap of the d-band density of states with the Li 2s and 2p levels, and is shown to be not due solely to long-range electrostatic image potential effects.
Conventional wisdom presumes that low-coordinated crystal ground states require directional interactions. Using our recently introduced optimization procedure to achieve self-assembly of targeted structures [M. C. Rec...
详细信息
Conventional wisdom presumes that low-coordinated crystal ground states require directional interactions. Using our recently introduced optimization procedure to achieve self-assembly of targeted structures [M. C. Rechtsman et al., Phys. Rev. Lett. 95, 228301 (2005); Phys. Rev. E 73, 011406 (2006)], we present an isotropic pair potential V(r) for a three-dimensional many-particle system whose classical ground state is the low-coordinated simple cubic lattice. This result is part of an ongoing pursuit by the authors to develop analytical and computational tools to solve statistical-mechanical inverse problems for the purpose of achieving targeted self-assembly. The purpose of these methods is to design interparticle interactions that cause self-assembly of technologically important target structures for applications in photonics, catalysis, separation, sensors, and electronics. We also show that standard approximate integral-equation theories of the liquid state that utilize pair correlation function information cannot be used in the reverse mode to predict the correct simple cubic potential. We report in passing optimized isotropic potentials that yield the body-centered-cubic and simple hexagonal lattices, which provide other examples of non-close-packed structures that can be assembled using isotropic pair interactions.
We present a method to investigate the dynamics of a single semiflexible polymer, subject to anisotropic friction in a viscous fluid. In contrast to previous approaches, we do not rely on a discrete bead-rod model, bu...
详细信息
We present a method to investigate the dynamics of a single semiflexible polymer, subject to anisotropic friction in a viscous fluid. In contrast to previous approaches, we do not rely on a discrete bead-rod model, but introduce a suitable normal mode decomposition of a continuous space curve. By means of a perturbation expansion for stiff filaments, we derive a closed set of coupled Langevin equations in mode space for the nonlinear dynamics in two dimensions, taking into account exactly the local constraint of inextensibility. The stochastic differential equations obtained this way are solved numerically, with parameters adjusted to describe the motion of actin filaments. As an example, we show results for the tumbling motion in shear flow.
We present a theoretical study of surface states close to 3d transition-metal adatoms (Cr, Mn, Fe, Co, Ni, and Cu) on a Cu(111) surface in terms of an embedding technique using the fully relativistic Korringa-Kohn-Ros...
We present a theoretical study of surface states close to 3d transition-metal adatoms (Cr, Mn, Fe, Co, Ni, and Cu) on a Cu(111) surface in terms of an embedding technique using the fully relativistic Korringa-Kohn-Rostoker method. For each of the adatoms we found resonances in the s-like states to be attributed to a localization of the surface states in the presence of an impurity. We studied the change of the s-like densities of states in the vicinity of the surface-state band edge due to scattering effects mediated via the adatom’s d orbitals. The results obtained clearly show that a magnetic impurity causes spin polarization of the surface states. In particular, the long-range oscillations of the spin-polarized s-like density of states around an Fe adatom are demonstrated.
Real collective density variables C(k) [cf. Eq. (1.3)] in many-particle systems arise from nonlinear transformations of particle positions, and determine the structure factor S(k), where k denotes the wave vector. Our...
详细信息
Real collective density variables C(k) [cf. Eq. (1.3)] in many-particle systems arise from nonlinear transformations of particle positions, and determine the structure factor S(k), where k denotes the wave vector. Our objective is to prescribe C(k) and then to find many-particle configurations that correspond to such a target C(k) using a numerical optimization technique. Numerical results reported here extend earlier one- and two-dimensional studies to include three dimensions. In addition, they demonstrate the capacity to control S(k) in the neighborhood of ∣k∣=0. The optimization method employed generates multiparticle configurations for which S(k)∝∣k∣α, ∣k∣⩽K, and α=1, 2, 4, 6, 8, and 10. The case α=1 is relevant for the Harrison-Zeldovich model of the early universe, for superfluid He4, and for jammed amorphous sphere packings. The analysis also provides specific examples of interaction potentials whose classical ground states are configurationally degenerate and disordered.
We propose a new mechanism for surface-induced magnetic anisotropy to explain the thickness dependence of the Kondo resistivity of thin films of dilute magnetic alloys. The surface anisotropy energy, generated by spin...
详细信息
We propose a new mechanism for surface-induced magnetic anisotropy to explain the thickness dependence of the Kondo resistivity of thin films of dilute magnetic alloys. The surface anisotropy energy, generated by spin-orbit coupling on the magnetic impurity itself, is an oscillating function of the distance d from the surface and decays as 1/d2. Numerical estimates based on simple models suggest that this mechanism, unlike its alternatives, gives rise to an effect of the desired order of magnitude.
暂无评论