咨询与建议

限定检索结果

文献类型

  • 1,728 篇 会议
  • 1,254 篇 期刊文献
  • 17 册 图书

馆藏范围

  • 2,999 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,749 篇 工学
    • 965 篇 计算机科学与技术...
    • 842 篇 软件工程
    • 730 篇 控制科学与工程
    • 280 篇 信息与通信工程
    • 264 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 240 篇 机械工程
    • 210 篇 光学工程
    • 180 篇 电气工程
    • 145 篇 仪器科学与技术
    • 127 篇 电子科学与技术(可...
    • 104 篇 交通运输工程
    • 77 篇 力学(可授工学、理...
    • 73 篇 安全科学与工程
    • 71 篇 动力工程及工程热...
    • 67 篇 化学工程与技术
    • 66 篇 土木工程
    • 65 篇 建筑学
  • 934 篇 理学
    • 440 篇 数学
    • 289 篇 物理学
    • 279 篇 生物学
    • 140 篇 统计学(可授理学、...
    • 136 篇 系统科学
    • 70 篇 化学
  • 314 篇 管理学
    • 215 篇 管理科学与工程(可...
    • 110 篇 图书情报与档案管...
    • 104 篇 工商管理
  • 228 篇 医学
    • 208 篇 临床医学
    • 171 篇 基础医学(可授医学...
    • 124 篇 药学(可授医学、理...
  • 63 篇 法学
  • 42 篇 经济学
  • 30 篇 农学
  • 29 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 133 篇 robots
  • 121 篇 robot sensing sy...
  • 101 篇 intelligent robo...
  • 92 篇 mobile robots
  • 82 篇 cameras
  • 79 篇 computer science
  • 69 篇 accuracy
  • 68 篇 robustness
  • 67 篇 navigation
  • 63 篇 deep learning
  • 63 篇 training
  • 62 篇 robot kinematics
  • 60 篇 feature extracti...
  • 58 篇 trajectory
  • 55 篇 robot vision sys...
  • 54 篇 visualization
  • 52 篇 control systems
  • 49 篇 humans
  • 49 篇 computer vision
  • 47 篇 kinematics

机构

  • 48 篇 shenzhen institu...
  • 39 篇 department of el...
  • 31 篇 department of co...
  • 24 篇 robotics institu...
  • 22 篇 robotics and aut...
  • 18 篇 robotics institu...
  • 14 篇 robotics and aut...
  • 14 篇 state key labora...
  • 14 篇 robotics institu...
  • 13 篇 department of co...
  • 12 篇 infn sezione di ...
  • 12 篇 north-west unive...
  • 12 篇 department of el...
  • 12 篇 institut univers...
  • 12 篇 université de st...
  • 12 篇 ncsr demokritos ...
  • 12 篇 infn sezione di ...
  • 12 篇 infn sezione di ...
  • 12 篇 comenius univers...
  • 12 篇 infn sezione di ...

作者

  • 34 篇 dou qi
  • 25 篇 huang jianwei
  • 25 篇 al-turjman fadi
  • 24 篇 ge shuzhi sam
  • 23 篇 shuzhi sam ge
  • 23 篇 sattar junaed
  • 22 篇 fadi al-turjman
  • 22 篇 nikolakopoulos g...
  • 20 篇 ramiz salama
  • 20 篇 ma jun
  • 19 篇 liu ming
  • 19 篇 heng pheng-ann
  • 17 篇 carlos silvestre
  • 17 篇 salama ramiz
  • 16 篇 jenkins odest ch...
  • 13 篇 antonio franchi
  • 13 篇 liu yun-hui
  • 13 篇 scherer sebastia...
  • 12 篇 chen a.
  • 12 篇 benoit d.m.

语言

  • 2,536 篇 英文
  • 450 篇 其他
  • 18 篇 中文
检索条件"机构=Department of Robotics Engineering and Computer Science"
2999 条 记 录,以下是2031-2040 订阅
排序:
RoboFDM: A robotic system for support-free fabrication using FDM
RoboFDM: A robotic system for support-free fabrication using...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Chenming Wu Chengkai Dai Guoxin Fang Yong-Jin Liu Charlie C.L. Wang Department of Computer Science and Technology Tsinghua University Beijing China Department of Design Engineering and TU Delft Robotics Institute Delft University of Technology Netherlands
This paper presents a robotic system - RoboFDM that targets at printing 3D models without support-structures, which is considered as the major restriction to the flexibility of 3D printing. The hardware of RoboFDM con... 详细信息
来源: 评论
Multiple Model based Unscented Particle Filter Algorithm for a SINS/CNS Integrated Navigation System
Multiple Model based Unscented Particle Filter Algorithm for...
收藏 引用
American Control Conference
作者: Fangfang Zhao Shuzhi Sam Ge Wei He School of Computer Science and Engineering Center for Robotics University of Electronic Science and Technology of China Chengdu 611731 China the Department of Electrical and Computer Engineering National University of Singapore 117576 Singapore and Center for Robotics University of Electronic Science and Technology of China Chengdu 611731 China School of Automation and Electrical Engineering University of Science and Technology of Beijing Beijing 100083 China
The single model filter has poor adaptability under the uncertain or unknown system parameters, multiple model filters can be used to resolve this problem. This paper investigates the multiple model adaptive estimatio... 详细信息
来源: 评论
Phase contrast time-lapse microscopy datasets with automated and manual cell tracking annotations
收藏 引用
Scientific Data 2018年 第1期5卷 1-12页
作者: Ker, Dai Fei Elmer Eom, Sungeun Sanami, Sho Bise, Ryoma Pascale, Corinne Yin, Zhaozheng Huh, Seung-Il Osuna-Highley, Elvira Junkers, Silvina N. Helfrich, Casey J. Liang, Peter Yongwen Pan, Jiyan Jeong, Soojin Kang, Steven S. Liu, Jinyu Nicholson, Ritchie Sandbothe, Michael F. Van, Phu T. Liu, Anan Chen, Mei Kanade, Takeo Weiss, Lee E. Campbell, Phil G. Department of Biological Sciences Carnegie Mellon University Pittsburgh United States Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin Hong Kong School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong Robotics Institute Carnegie Mellon University Pittsburgh United States Dai Nippon Printing Tokyo Japan Department of Advanced Information Technology Kyushu University Fukuoka Japan Engineering Research Accelerator Carnegie Mellon University Pittsburgh United States Department of Computer Science Missouri University of Science and Technology Rolla United States Intel Labs Pittsburgh Pittsburgh United States Department of Computer Science Carnegie Mellon University Pittsburgh United States School of Electrical and Information Engineering Tianjin University Tianjin China Department of Electrical and Computer Engineering University at Albany State University of New York Albany United States Department of Biomedical Engineering Carnegie Mellon University Pittsburgh United States
Phase contrast time-lapse microscopy is a non-destructive technique that generates large volumes of image-based information to quantify the behaviour of individual cells or cell populations. To guide the development o...
来源: 评论
Gaussian pedestrian proxemics model with social force for service robot navigation in dynamic environment  17th
收藏 引用
17th International Conference on Asia Simulation, AsiaSim 2017
作者: Chik, Sheng Fei Yeong, Che Fai Su, Eileen Lee Ming Lim, Thol Yong Duan, Feng Tan, Jeffrey Too Chuan Tan, Ping Hua Chin, Patrick Jun Hua Faculty of Electrical Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia Centre for Artificial Intelligence and Robotics Universiti Teknologi Malaysia Johor Bahru Malaysia Malaysia Japan Institute of Technolgy Universiti Teknologi Malaysia Johor Bahru Malaysia Department of Automation College of Computer and Control Engineering Nankai University Tianjin China Institute of Industrial Science The University of Tokyo Tokyo Japan DF Automation and Robotics Sdn. Bhd Skudai Malaysia
Pedestrian motion behaves stochastically, causing difficulties in modelling the appropriate proxemics for effective and efficient service robot navigation. Intruding the pedestrian social space can affect the social a... 详细信息
来源: 评论
Development of a swarm UAV simulator integrating realistic motion control models for disaster operations
arXiv
收藏 引用
arXiv 2017年
作者: Siddiqui, Kazi Tanvir Ahmed Feil-Seifer, David Jiang, Tianyi Jose, Sonu Liu, Siming Louis, Sushil Robotics Research Laboratory Computer Science and Engineering Department University of Nevada Reno Reno Nevada89557 United States Evolutionary Computing Systems Lab Computer Science and Engineering Department University of Nevada Reno Reno Nevada89557 United States
Simulation environments for Unmanned Aerial Vehicles (UAVs) can be very useful for prototyping user interfaces and training personnel that will operate UAVs in the real world. The realistic operation of such simulatio... 详细信息
来源: 评论
TrafficNet: An open naturalistic driving scenario library
arXiv
收藏 引用
arXiv 2017年
作者: Zhao, Ding Guo, Yaohui Jia, Yunhan Jack Department of Mechanical Engineering Robotics Institute University of Michigan Ann Arbor United States Robotics Institute University of Michigan Ann Arbor United States Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor United States
The enormous efforts spent on collecting naturalistic driving data in the recent years has resulted in an expansion of publicly available traffic datasets, which has the potential to assist the development of the self... 详细信息
来源: 评论
FBG-based control of a continuum manipulator interacting with obstacles
arXiv
收藏 引用
arXiv 2018年
作者: Sefati, Shahriar Murphy, Ryan J. Alambeigi, Farshid Pozin, Michael Iordachita, Iulian Taylor, Russell H. Armand, Mehran Laboratory for Computational Sensing and Robotics Johns Hopkins University BaltimoreMD United States Department of Mechanical Engineering Johns Hopkins University BaltimoreMD United States Department of Computer Science Johns Hopkins University BaltimoreMD United States Johns Hopkins University Applied Physics Laboratory LaurelMD United States Auris Health Inc. Redwood CityCA United States
Tracking and controlling the shape of continuum dexterous manipulators (CDM) in constraint environments is a challenging task. The imposed constraints and interaction with unknown obstacles may conform the CDM's s... 详细信息
来源: 评论
Design and initial study of porous core electromagnet for levitation applications
收藏 引用
AIP Conference Proceedings 2018年 第1期2029卷
作者: Adam Piłat Bartosz Sikora 1AGH University of Science and Technology Faculty of Electrical Engineering Automatics Computer Science and Biomedical Engineering Department of Automatic Control and Robotics Mickiewicza 30 30-059 Krakow Poland
A concept of the porous core electromagnet is studied. The form for the electromagnet core was printed using 3D technique. The core was manufactured manually using iron filings and cured in room temperature and air pr...
来源: 评论
The ultra-high-energy event KM3-230213A within the global neutrino landscape
arXiv
收藏 引用
arXiv 2025年
作者: Adriani, O. Aiello, S. Albert, A. Alhebsi, A.R. Alshamsi, M. Garre, S. Alves Ambrosone, A. Ameli, F. Andre, M. Aphecetche, L. Ardid, M. Ardid, S. Argüelles, C. Aublin, J. Badaracco, F. Bailly-Salins, L. Bardačová, Z. Baret, B. Bariego-Quintana, A. Becherini, Y. Bendahman, M. Gualandi, F. Benfenati Benhassi, M. Bennani, M. Benoit, D.M. Berbee, E. Berti, E. Bertin, V. Betti, P. Biagi, S. Boettcher, M. Bonanno, D. Bottai, S. Bouasla, A.B. Boumaaza, J. Bouta, M. Bouwhuis, M. Bozza, C. Bozza, R.M. Brânzaş, H. Bretaudeau, F. Breuhaus, M. Bruijn, R. Brunner, J. Bruno, R. Buis, E. Buompane, R. Busto, J. Caiffi, B. Calvo, D. Capone, A. Carenini, F. Carretero, V. Cartraud, T. Castaldi, P. Cecchini, V. Celli, S. Cerisy, L. Chabab, M. Chen, A. Cherubini, S. Chiarusi, T. Circella, M. Clark, R. Cocimano, R. Coelho, J.A.B. Coleiro, A. Condorelli, A. Coniglione, R. Coyle, P. Creusot, A. Cuttone, G. Dallier, R. De Benedittis, A. De Wasseige, G. Decoene, V. Deguire, P. Del Rosso, I. Di Mauro, L.S. Di Palma, I. Díaz, A.F. Diego-Tortosa, D. Distefano, C. Domi, A. Donzaud, C. Dornic, D. Drakopoulou, E. Drouhin, D. Ducoin, J.-G. Duverne, P. Dvornický, R. Eberl, T. Eckerová, E. Eddymaoui, A. van Eeden, T. Eff, M. van Eijk, D. El Bojaddaini, I. El Hedri, S. El Mentawi, S. Ellajosyula, V. Enzenhöfer, A. Ferrara, G. Filipović, M.D. Filippini, F. Franciotti, D. Fusco, L.A. Gal, T. Méndez, J. García Soto, A. Garcia Oliver, C. Gatius Geißelbrecht, N. Genton, E. Ghaddari, H. Gialanella, L. Gibson, B.K. Giorgio, E. Goos, I. Goswami, P. Gozzini, S.R. Gracia, R. Guidi, C. Guillon, B. Gutiérrez, M. Haack, C. van Haren, H. Heijboer, A. Hennig, L. Hernández-Rey, J.J. Idrissi, A. Ibnsalih, W. Idrissi Illuminati, G. Janik, O. Joly, D. de Jong, M. de Jong, P. Jung, B.J. Kalaczyński, P. Kamp, N. Keegans, J. Kikvadze, V. Kistauri, G. Kopper, C. Kouchner, A. Kovalev, Y.Y. Krupa, L. Kueviakoe, V. Kulikovskiy, V. Kvatadze, R. Labalme, M. Lahmann, R. INFN Sezione di Firenze via Sansone 1 Sesto Fiorentino50019 Italy Università di Firenze Dipartimento di Fisica e Astronomia via Sansone 1 Sesto Fiorentino50019 Italy Via Santa Sofia 64 Catania95123 Italy Université de Strasbourg CNRS IPHC UMR 7178 StrasbourgF-67000 France Université de Haute Alsace rue des Frères Lumière Mulhouse68093 Cedex France Khalifa University of Science and Technology Department of Physics PO Box 127788 Abu Dhabi United Arab Emirates Aix Marseille Univ CNRS IN2P3 CPPM Marseille France c/Catedrático José Beltrán 2 Valencia Paterna46980 Spain Università di Napoli "Federico II" Dip. Scienze Fisiche "E. Pancini" Complesso Universitario di Monte S. Angelo Via Cintia ed. G Napoli80126 Italy INFN Sezione di Napoli Complesso Universitario di Monte S. Angelo Via Cintia ed. G Napoli80126 Italy INFN Sezione di Roma Piazzale Aldo Moro 2 Roma00185 Italy Universitat Politècnica de Catalunya Laboratori d’Aplicacions Bioacústiques Centre Tecnològic de Vilanova i la Geltrú Avda. Rambla Exposició s/n Vilanova i la Geltrú08800 Spain Subatech IMT Atlantique IN2P3-CNRS Nantes Université 4 rue Alfred Kastler - La Chantrerie BP Nantes20722 44307 France Universitat Politècnica de València Instituto de Investigación para la Gestión Integrada de las Zonas Costeras C/ Paranimf 1 Gandia46730 Spain Harvard University Department of Physics Laboratory for Particle Physics and Cosmology Lyman Laboratory 17 Oxford St. CambridgeMA02138 United States Université Paris Cité CNRS Astroparticule et Cosmologie ParisF-75013 France INFN Sezione di Genova Via Dodecaneso 33 Genova16146 Italy Università di Genova Via Dodecaneso 33 Genova16146 Italy LPC CAEN Normandie Univ ENSICAEN UNICAEN CNRS IN2P3 6 boulevard Maréchal Juin Caen14050 France Comenius University in Bratislava Department of Nuclear Physics and Biophysics Mlynska dolina F1 Bratislava842 48 Slovakia Czech Technical University in Prague Institute of Experimen
On February 13th, 2023, the KM3NeT/ARCA telescope detected a neutrino candidate with an estimated energy in the hundreds of PeVs. In this article, the observation of this ultra-high-energy neutrino is discussed in lig... 详细信息
来源: 评论
Reliable multi-person identification using DCNN-based face recognition algorithm and scale-ratio method
Reliable multi-person identification using DCNN-based face r...
收藏 引用
International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
作者: Junghoon Kim Sang-Seok Yun Bong-Nam Kang Daijin Kim Jongsuk Choi Center for Robotics Research Korea Institute of Science and Technology Seoul Korea Division of Mechanical Convergence Engineering Silla University Busan Korea Department of Creative IT Engineering POSTECH Pohang Korea Department of Computer Science and Engineering POSTECH Pohang Korea
Recently, deep convolutional neural networks (DCNNs) have set a new trend in the computer vision community by improving the state-of-the-art performance in almost all of applications. We propose DCNN-based face recogn... 详细信息
来源: 评论