咨询与建议

限定检索结果

文献类型

  • 50 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 85 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 48 篇 工学
    • 26 篇 控制科学与工程
    • 26 篇 计算机科学与技术...
    • 25 篇 软件工程
    • 8 篇 生物工程
    • 6 篇 信息与通信工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 光学工程
    • 4 篇 交通运输工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 仪器科学与技术
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 航空宇航科学与技...
    • 2 篇 农业工程
  • 22 篇 理学
    • 12 篇 数学
    • 8 篇 生物学
    • 5 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 3 篇 系统科学
    • 1 篇 大气科学
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 3 篇 药学(可授医学、理...
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 6 篇 robots
  • 5 篇 planning
  • 5 篇 robustness
  • 4 篇 visualization
  • 3 篇 social robots
  • 3 篇 trajectory
  • 3 篇 human robot inte...
  • 2 篇 learning systems
  • 2 篇 reinforcement le...
  • 2 篇 deep learning
  • 2 篇 automation
  • 2 篇 cameras
  • 2 篇 trajectories
  • 2 篇 textiles
  • 2 篇 logic
  • 2 篇 humanoid robots
  • 2 篇 collision avoida...
  • 2 篇 robot kinematics
  • 2 篇 accuracy
  • 2 篇 technological in...

机构

  • 15 篇 division of robo...
  • 7 篇 division of robo...
  • 3 篇 archimedes/athen...
  • 3 篇 stockholm
  • 3 篇 active perceptio...
  • 2 篇 department of in...
  • 2 篇 machine learning...
  • 2 篇 department of ps...
  • 2 篇 the thomas lord ...
  • 2 篇 robotics percept...
  • 2 篇 division of robo...
  • 2 篇 department of ro...
  • 2 篇 division of robo...
  • 2 篇 the division of ...
  • 2 篇 department of cl...
  • 2 篇 department of su...
  • 2 篇 robotics percept...
  • 2 篇 division of robo...
  • 2 篇 department of in...
  • 2 篇 department of ro...

作者

  • 12 篇 kragic danica
  • 10 篇 danica kragic
  • 7 篇 kjellström hedvi...
  • 6 篇 tumova jana
  • 6 篇 iolanda leite
  • 5 篇 jana tumova
  • 4 篇 leite iolanda
  • 4 篇 vinuesa ricardo
  • 4 篇 chen fei
  • 4 篇 rebecca stower
  • 4 篇 fernandes miguel
  • 4 篇 azizpour hossein
  • 3 篇 lindemann lars
  • 3 篇 verhagen joris
  • 3 篇 broomé sofia
  • 3 篇 jiao jianhao
  • 3 篇 poni stefano
  • 3 篇 teng tao
  • 3 篇 semini claudio
  • 3 篇 bütepage judith

语言

  • 57 篇 英文
  • 28 篇 其他
检索条件"机构=Department of Robotics Perception and Learning"
85 条 记 录,以下是21-30 订阅
排序:
Fast and Robust Visuomotor Riemannian Flow Matching Policy
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Haoran Jaquier, Noémie Peters, Jan Rozo, Leonel Division of Robotics Perception and Learning KTH Royal Institute of Technology Stockholm Sweden Bosch Center for Artificial Intelligence Renningen Germany Computer Science Department The Technische Universität Darmstadt Darmstadt Germany
Diffusion-based visuomotor policies excel at learning complex robotic tasks by effectively combining visual data with high-dimensional, multi-modal action distributions. However, diffusion models often suffer from slo... 详细信息
来源: 评论
Network Parameter Control in Cellular Networks through Graph-Based Multi-Agent Constrained Reinforcement learning
Network Parameter Control in Cellular Networks through Graph...
收藏 引用
IEEE International Conference on Automation Science and Engineering (CASE)
作者: Albin Larsson Forsberg Alexandros Nikou Aneta Vulgarakis Feljan Jana Tumova Ericsson Research Research Area Artificial Intelligence (AI) Stockholm Sweden Department of Electrical Engineering and Computer Science Division of Robotics Perception and Learning KTH Stockholm Sweden
Cellular networks are growing in complexity at increasing speed and the geographical locations in which they are deployed in are getting denser. Traditional control methods fall short in providing a scalable and dynam...
来源: 评论
Generating Scenarios from High-Level Specifications for Object Rearrangement Tasks
Generating Scenarios from High-Level Specifications for Obje...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Sanne van Waveren Christian Pek Iolanda Leite Jana Tumova Danica Kragic School of Interactive Computing Georgia Institute of Technology Atlanta GA USA Department of Cognitive Robotics Delft University of Technology Delft the Netherlands Division of Robotics Perception and Learning KTH Royal Institute of Technology Stockholm Sweden
Rearranging objects is an essential skill for robots. To quickly teach robots new rearrangements tasks, we would like to generate training scenarios from high-level specifications that define the relative placement of...
来源: 评论
CageCoOpt: Enhancing Manipulation Robustness through Caging-Guided Morphology and Policy Co-Optimization
arXiv
收藏 引用
arXiv 2024年
作者: Dong, Yifei Han, Shaohang Cheng, Xianyi Friedl, Werner Cabral Muchacho, Rafael I. Roa, Máximo A. Tumova, Jana Pokorny, Florian T. The division of Robotics Perception and Learning KTH Royal Institute of Technology Stockholm10044 Sweden Department of Mechanical Engineering and Material Science Duke University DurhamNC27708 United States Wessling82234 Germany
Uncertainties in contact dynamics and object geometry remain significant barriers to robust robotic manipulation. Caging mitigates these uncertainties by constraining an object’s mobility without requiring precise co... 详细信息
来源: 评论
Ice-Breakers, Turn-Takers and Fun-Makers: Exploring Robots for Groups with Teenagers
arXiv
收藏 引用
arXiv 2025年
作者: Gillet, Sarah Winkle, Katie Belgiovine, Giulia Leite, Iolanda Division of Robotics Perception and Learning School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Sweden CONTACT unit Istituto Italiano di Tecnologia DIBRIS department Università degli Studi di Genova Italy
Successful, enjoyable group interactions are important in public and personal contexts, especially for teenagers whose peer groups are important for self-identity and self-esteem. Social robots seemingly have the pote... 详细信息
来源: 评论
Robust STL Control Synthesis under Maximal Disturbance Sets
Robust STL Control Synthesis under Maximal Disturbance Sets
收藏 引用
IEEE Conference on Decision and Control
作者: Joris Verhagen Lars Lindemann Jana Tumova Division of Robotics Perception and Learning School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden Thomas Lord Department of Computer Science University of Southern California Los Angeles CA USA
This work addresses maximally robust control synthesis under unknown disturbances. We consider a nonlinear system, subject to a Signal Temporal Logic (STL) specification and jointly synthesize the maximal possible dis... 详细信息
来源: 评论
Robust STL Control Synthesis under Maximal Disturbance Sets
arXiv
收藏 引用
arXiv 2024年
作者: Verhagen, Joris Lindemann, Lars Tumova, Jana The Division of Robotics Perception and Learning School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden The Thomas Lord Department of Computer Science University of Southern California Los AngelesCA United States
This work addresses maximally robust control synthesis under unknown disturbances. We consider a general nonlinear system, subject to a Signal Temporal Logic (STL) specification, and wish to jointly synthesize the max... 详细信息
来源: 评论
Navigating Users in Emotion-Aware Conversational Agents: Exploring Strategies for Enhanced Interaction
SSRN
收藏 引用
SSRN 2025年
作者: Zhang, Yuchong Ma, Yong Fu, Di Portales, Stephanie Zubicueta Fjeld, Morten Kragic, Danica KTH Royal Institute of Technology Stockholm Sweden University of Bergen Bergen Norway University of Surrey Guildford United Kingdom Norwegian University of Science and Technology Trondheim Norway Chalmers University of Technology Gothenburg Sweden Department of Robotics Perception and Learning
Conversational agents (CAs) are increasingly embedded in daily life, yet their ability to navigate user emotions efficiently is still evolving. This study investigates how users with varying traits – gender, personal...
来源: 评论
Guided Decoding for Robot On-line Motion Generation and Adaption
Guided Decoding for Robot On-line Motion Generation and Adap...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Nutan Chen Botond Cseke Elie Aljalbout Alexandros Paraschos Marvin Alles Patrick van der Smagt Machine Learning Research Lab Volkswagen Group Germany Department of Informatics Robotics and Perception Group University of Zurich (UZH) Department of Neuroinformatics UZH and ETH Zurich Switzerland Faculty of Informatics Eötvös Loránd University Budapest Hungary
We present a novel motion generation approach for robot arms, with high degrees of freedom, in complex settings that can adapt online to obstacles or new via points. learning from Demonstration facilitates rapid adapt... 详细信息
来源: 评论
CITR: A Coordinate-Invariant Task Representation for Robotic Manipulation
CITR: A Coordinate-Invariant Task Representation for Robotic...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Peter So Rafael I. Cabral Muchacho Robin Jeanne Kirschner Abdalla Swikir Luis Figueredo Fares J. Abu-Dakka Sami Haddadin Munich Institute of Robotics and Machine Intelligence TUM Germany Division of Robotics Perception and Learning KTH Royal Institute of Technology Sweden Department of Electrical and Electronic Engineering Omar Al-Mukhtar University (OMU) Libya School of Computer Science University of Nottingham UK Electronic and Informatics Department Faculty of Engineering Mondragon Unibertsitatea Spain
The basis for robotics skill learning is an adequate representation of manipulation tasks based on their physical properties. As manipulation tasks are inherently invariant to the choice of reference frame, an ideal t... 详细信息
来源: 评论