咨询与建议

限定检索结果

文献类型

  • 930 篇 期刊文献
  • 104 篇 会议
  • 3 册 图书

馆藏范围

  • 1,037 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 808 篇 理学
    • 582 篇 数学
    • 206 篇 统计学(可授理学、...
    • 199 篇 物理学
    • 122 篇 生物学
    • 102 篇 系统科学
    • 65 篇 化学
    • 32 篇 地球物理学
    • 24 篇 大气科学
  • 601 篇 工学
    • 273 篇 计算机科学与技术...
    • 213 篇 软件工程
    • 78 篇 生物工程
    • 76 篇 力学(可授工学、理...
    • 76 篇 控制科学与工程
    • 76 篇 生物医学工程(可授...
    • 61 篇 信息与通信工程
    • 49 篇 化学工程与技术
    • 47 篇 电子科学与技术(可...
    • 41 篇 电气工程
    • 39 篇 动力工程及工程热...
    • 38 篇 材料科学与工程(可...
    • 36 篇 光学工程
    • 34 篇 机械工程
    • 22 篇 土木工程
    • 18 篇 仪器科学与技术
  • 88 篇 管理学
    • 44 篇 图书情报与档案管...
    • 36 篇 管理科学与工程(可...
  • 57 篇 医学
    • 46 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 23 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 18 篇 法学
  • 17 篇 经济学
  • 15 篇 农学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 19 篇 tensors
  • 19 篇 machine learning
  • 19 篇 stochastic syste...
  • 13 篇 inverse problems
  • 13 篇 deep neural netw...
  • 13 篇 matrix algebra
  • 12 篇 finite element m...
  • 9 篇 eigenvalues and ...
  • 9 篇 topology
  • 9 篇 forecasting
  • 9 篇 numerical method...
  • 9 篇 geometry
  • 8 篇 statistics
  • 8 篇 cosmology
  • 8 篇 covariance matri...
  • 8 篇 polynomials
  • 8 篇 bayesian network...
  • 8 篇 dynamics
  • 7 篇 cosmic microwave...
  • 7 篇 iterative method...

机构

  • 98 篇 department of ap...
  • 50 篇 department of ap...
  • 31 篇 department of ap...
  • 20 篇 department of ap...
  • 14 篇 department of as...
  • 14 篇 department of st...
  • 13 篇 joseph henry lab...
  • 13 篇 computational an...
  • 13 篇 computational sc...
  • 12 篇 school of physic...
  • 12 篇 department of ph...
  • 11 篇 center for compu...
  • 11 篇 physics and astr...
  • 11 篇 department of ph...
  • 11 篇 department of ap...
  • 11 篇 department of ph...
  • 10 篇 committee on com...
  • 10 篇 astrophysics res...
  • 10 篇 department of ap...
  • 10 篇 school of earth ...

作者

  • 38 篇 hauenstein jonat...
  • 28 篇 lim lek-heng
  • 28 篇 lin lizhen
  • 23 篇 fu guosheng
  • 22 篇 schiavazzi danie...
  • 22 篇 liu fang
  • 18 篇 castruccio stefa...
  • 14 篇 lassas matti
  • 13 篇 calabrese ermini...
  • 13 篇 de hoop maarten ...
  • 12 篇 hughes john p.
  • 11 篇 samulyak roman
  • 11 篇 genton marc g.
  • 11 篇 gallardo patrici...
  • 10 篇 devlin mark j.
  • 10 篇 dunkley jo
  • 10 篇 dobriban edgar
  • 10 篇 cornelis chris
  • 10 篇 zhang yong-tao
  • 10 篇 hill j. colin

语言

  • 988 篇 英文
  • 45 篇 其他
  • 5 篇 中文
检索条件"机构=Department of Statistics and Committee on Computational and Applied Mathematics"
1037 条 记 录,以下是11-20 订阅
排序:
Tensor parametric Hamiltonian operator inference
arXiv
收藏 引用
arXiv 2025年
作者: Vijaywargiya, Arjun McQuarrie, Shane A. Gruber, Anthony Department of Applied and Computational Mathematics and Statistics University of Notre Dame United States Computational Mathematics Center for Computing Research Sandia National Laboratories Scientific Machine Learning Center for Computing Research Sandia National Laboratories
This work presents a tensor-based approach to constructing data-driven reduced-order models corresponding to semi-discrete partial differential equations with canonical Hamiltonian structure. By expressing parameter-v... 详细信息
来源: 评论
SEMIALGEBRAIC NEURAL NETWORKS: FROM ROOTS TO REPRESENTATIONS
arXiv
收藏 引用
arXiv 2025年
作者: Mis, S. David Lassas, Matti de Hoop, Maarten V. Department of Computational Applied Mathematics and Operations Research Rice University HoustonTX77005 United States Department of Mathematics and Statistics University of Helsinki P.O. Box 68 HelsinkiFI-00014 Finland Simons Chair in Computational Applied Mathematics and Earth Science Rice University HoustonTX77005 United States
Many numerical algorithms in scientific computing—particularly in areas like numerical linear algebra, PDE simulation, and inverse problems—produce outputs that can be represented by semialgebraic functions;that is,... 详细信息
来源: 评论
Integral equations for flexural-gravity waves: analysis and numerical methods
arXiv
收藏 引用
arXiv 2025年
作者: Askham, Travis Hoskins, Jeremy G. Nekrasov, Peter Rachh, Manas Department of Mathematical Sciences New Jersey Institute of Technology NewarkNJ07102 United States Department of Statistics and CCAM University of Chicago ChicagoIL60637 United States Committee on Computational and Applied Mathematics University of Chicago ChicagoIL60637 United States Center for Computational Mathematics Flatiron Institute New YorkNY10010 United States
In this work, we develop a fast and accurate method for the scattering of flexural-gravity waves by a thin plate of varying thickness overlying a fluid of infinite depth. This problem commonly arises in the study of s... 详细信息
来源: 评论
Solving Inverse Problems with Deep Linear Neural Networks: Global Convergence Guarantees for Gradient Descent with Weight Decay
arXiv
收藏 引用
arXiv 2025年
作者: Laus, Hannah Parkinson, Suzanna Charisopoulos, Vasileios Krahmer, Felix Willett, Rebecca Department of Mathematics Technical University of Munich Germany Germany Committee on Computational and Applied Mathematics University of Chicago United States Data Science Institute University of Chicago United States Technical University of Munich Germany Department of Computer Science University of Chicago United States Department of Statistics University of Chicago United States
Machine learning methods are commonly used to solve inverse problems, wherein an unknown signal must be estimated from few measurements generated via a known acquisition procedure. In particular, neural networks perfo... 详细信息
来源: 评论
THE ELASTIC RAY TRANSFORM
arXiv
收藏 引用
arXiv 2025年
作者: Ilmavirta, Joonas Kykkänen, Antti Saksala, Teemu Department of Mathematics and Statistics University of Jyväskylä Jyväskylä Finland Department of Computational Applied Mathematics and Operations Research Rice University HoustonTX United States Department of Mathematics NC State University RaleighNC United States
We introduce and study a new family of tensor tomography problems. At rank 2 it corresponds to linearization of travel time of elastic waves, measured for all polarizations. We provide a kernel characterization for ra... 详细信息
来源: 评论
Independence, induced subgraphs, and domination in K1,r-free graphs
arXiv
收藏 引用
arXiv 2025年
作者: Caro, Yair Davila, Randy Henning, Michael A. Pepper, Ryan Department of Mathematics University of Haifa–Oranim Tivon36006 Israel Department of Computational Applied Mathematics & Operations Research Rice University HoustonTX77005 United States Department of Mathematics and Applied Mathematics University of Johannesburg Auckland Park2006 South Africa Department of Mathematics and Statistics University of Houston–Downtown HoustonTX77002 United States
Let G be a graph and F a family of graphs. Define αF(G) as the maximum order of any induced subgraph of G that belongs to the family F. For the family F of graphs with chromatic number at most k, we prove that if G i... 详细信息
来源: 评论
Stability and Time-Step Constraints of Exponential Time Differencing Runge–Kutta Discontinuous Galerkin Methods for Advection-Diffusion Equations
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Ziyao Sun, Zheng Zhang, Yong-Tao Department of Applied and Computational Mathematics and Statistics University of Notre Dame Notre DameIN46556 United States Department of Mathemtatics The University of Alabama TuscaloosaAL35487 United States
In this paper, we investigate the stability and time-step constraints for solving advection-diffusion equations using exponential time differencing (ETD) Runge–Kutta (RK) methods in time and discontinuous Galerkin (D... 详细信息
来源: 评论
The Fokas method for evolution partial differential equations
收藏 引用
Partial Differential Equations in applied mathematics 2025年 14卷
作者: Chatziafratis, A. Fokas, A.S. Kalimeris, K. Department of Mathematics and Statistics School of Pure and Applied Sciences University of Cyprus Cyprus Institute of Applied and Computational Mathematics Foundation for Research and Technology Crete Greece Department of Applied Mathematics and Theoretical Physics University of Cambridge United Kingdom Mathematics Research Center Academy of Athens Greece
In the late 1990s a novel methodology was introduced for solving boundary value problems for linear and integrable nonlinear PDEs. This new approach is known as the Unified Transform or the Fokas method. Here we discu... 详细信息
来源: 评论
Advancements on multi-fidelity random Fourier neural networks: application to hurricane modeling for offshore wind energy
Advancements on multi-fidelity random Fourier neural network...
收藏 引用
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025
作者: Davis, Owen Geraci, Gianluca Wentz, Jacqueline M. King, Ryan N. Cortiella, Alexandre Rybchuk, Alex Gomez, Miguel Sanchez Deskos, Georgios Motamed, Mohammad Optimization and Uncertainty Quantification Sandia National Laboratories AlbuquerqueNM United States Computational Data Science Sandia National Laboratories LivermoreCA United States National Wind Technology Center National Renewable Energy Laboratory GoldenCO United States Department of Applied Mathematics and Statistics University of New Mexico AlbuquerqueNM United States
Multi-fidelity approaches are emerging as effective strategies in computational science to handle otherwise intractable tasks like Uncertainty Quantification (UQ), training of Machine Learning (ML) models, and optimiz... 详细信息
来源: 评论
Asymptotic normality of the Conditional Value-at-Risk based Pickands estimator
收藏 引用
statistics and Probability Letters 2025年 223卷
作者: Li, Yizhou Polak, Paweł Department of Applied Mathematics and Statistics Stony Brook University United States Institute for Advanced Computational Science Stony Brook University United States
We show weak convergence of the empirical Conditional Value-at-Risk (CVaR) in functional space and the asymptotic normality of the CVaR-based Pickands estimator from Chen (2021). These results demonstrate that the CVa... 详细信息
来源: 评论