咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science & Machine Learning Department"
1108 条 记 录,以下是31-40 订阅
排序:
On Fake News Detection with LLM Enhanced Semantics Mining
On Fake News Detection with LLM Enhanced Semantics Mining
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Ma, Xiaoxiao Zhang, Yuchen Ding, Kaize Yang, Jian Wu, Jia Fan, Hao School of Computing Macquarie University Sydney Australia Amazon Machine Learning Sydney Australia School of Information Management Wuhan University Hubei China Department of Statistics and Data Science Northwestern University IL United States
Large language models (LLMs) have emerged as valuable tools for enhancing textual features in various text-related tasks. Despite their superiority in capturing the lexical semantics between tokens for text analysis, ... 详细信息
来源: 评论
Hybrid Design for Privacy Preserved Image Representation in a Cloud Environment  12th
Hybrid Design for Privacy Preserved Image Representation in ...
收藏 引用
12th International Conference on Recent Trends in Computing, ICRTC 2024
作者: Vijay, K. Sorna Shanthi, D. Jaeyalakshmi, M. Vignesh, P. Yuvaraja, M. Department of Artificial Intelligence and Machine Learning Rajalakshmi Engineering College Chennai India Department of Artificial Intelligence and Data Science Rajalakshmi Engineering College Chennai India Department of Computer Science and Engineering Rajalakshmi Engineering College Chennai India
The digital era has made seamless sharing and keeping of media such as images on cloud platforms an integral part of our lives. Still, there is a big issue about user privacy and data security in these repositories. W... 详细信息
来源: 评论
Hypothesis testing with e-values
arXiv
收藏 引用
arXiv 2024年
作者: Ramdas, Aaditya Wang, Ruodu Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States Department of Statistics and Actuarial Science University of Waterloo Canada
This book is written to offer a humble, but unified, treatment of e-values inhypothesis testing. The book is organized into three parts: FundamentalConcepts, Core Ideas, and Advanced Topics. The first part includes th...
来源: 评论
A permutation-free kernel independence test
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2023年 第1期24卷 17707-17774页
作者: Shubhanshu Shekhar Ilmun Kim Aaditya Ramdas Department of Statistics and Data Science Carnegie Mellon University Pittsburgh PA Department of Statistics and Data Science Department of Applied Statistics Yonsei University Seodaemun-gu Seoul Republic of Korea Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University Pittsburgh PA
In nonparametric independence testing, we observe i.i.d. data {(Xi, Yi)}ni=1, where X ∈ Χ, Y ∈ Y lie in any general spaces, and we wish to test the null that X is independent of Y. Modern test statistics such as th... 详细信息
来源: 评论
Bagging in overparameterized learning: risk characterization and risk monotonization
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2023年 第1期24卷 15081-15193页
作者: Pratik Patil Jin-Hong Du Arun Kumar Kuchibhotla Department of Statistics University of California Berkeley Berkeley CA Department of Statistics and Data Science & Machine Learning Department Carnegie Mellon University Pittsburgh PA Department of Statistics and Data Science Carnegie Mellon University Pittsburgh PA
Bagging is a commonly used ensemble technique in statistics and machine learning to improve the performance of prediction procedures. In this paper, we study the prediction risk of variants of bagged predictors under ... 详细信息
来源: 评论
Empirical Bernstein in smooth Banach spaces
arXiv
收藏 引用
arXiv 2024年
作者: Martinez-Taboada, Diego Ramdas, Aaditya Department of Statistics & Data Science United States Machine Learning Department Carnegie Mellon University United States
Existing concentration bounds for bounded vector-valued random variables include extensions of the scalar Hoeffding and Bernstein inequalities. While the latter is typically tighter, it requires knowing a bound on the... 详细信息
来源: 评论
Statistical guarantees for local spectral clustering on random neighborhood graphs
收藏 引用
Journal of machine learning Research 2021年 第1期22卷 1-71页
作者: Green, Alden Balakrishnan, Sivaraman Tibshirani, Ryan J. Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
We study the Personalized PageRank (PPR) algorithm, a local spectral method for clustering, which extracts clusters using locally-biased random walks around a given seed node. In contrast to previous work, we adopt a ... 详细信息
来源: 评论
Enhancing Interpretability: The Role of Explainable AI in Healthcare Diagnostics  3
Enhancing Interpretability: The Role of Explainable AI in He...
收藏 引用
3rd International Conference on Electronics and Renewable Systems, ICEARS 2025
作者: Zade, Nikita Langote, Meher Verma, Prateek Faculty of Engineering & Technology Department of Artificial Intelligence & Data Science Maharashtra Sawangi442001 India Faculty of Engineering & Technology Department of Artificial Intelligence & Machine Learning Maharashtra Sawangi442001 India
XAI is now transforming the use of AI in diagnosing diseases by overcoming some of the problems inherent in most black-box approaches. In time-sensitive speciality areas like computer-aided diagnosis, image analysis, ... 详细信息
来源: 评论
Optimal ridge regularization for out-of-distribution prediction  24
Optimal ridge regularization for out-of-distribution predict...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Pratik Patil Jin-Hong Du Ryan J. Tibshirani Department of Statistics University of California Berkeley CA Department of Statistics and Data Science and Machine Learning Department Carnegie Mellon University Pittsburgh PA
We study the behavior of optimal ridge regularization and optimal ridge risk for out-of-distribution prediction, where the test distribution deviates arbitrarily from the train distribution. We establish general condi...
来源: 评论
An Empirical Analysis on Spatial Reasoning Capabilities of Large Multimodal Models
An Empirical Analysis on Spatial Reasoning Capabilities of L...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Shiri, Fatemeh Guo, Xiao-Yu Far, Mona Golestan Yu, Xin Haffari, Gholamreza Li, Yuan-Fang Department of Data Science & AI Monash University Australia Australian Institute for Machine Learning University of Adelaide Australia School of Electrical Engineering and Computer Science University of Queensland Australia
Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks. However, their spatial reasoning capabilities are under-investigated. In this paper, we construct a novel VQ... 详细信息
来源: 评论