咨询与建议

限定检索结果

文献类型

  • 674 篇 期刊文献
  • 420 篇 会议
  • 4 册 图书

馆藏范围

  • 1,098 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 682 篇 工学
    • 476 篇 计算机科学与技术...
    • 413 篇 软件工程
    • 142 篇 生物工程
    • 96 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 94 篇 生物医学工程(可授...
    • 70 篇 光学工程
    • 55 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 26 篇 机械工程
    • 24 篇 建筑学
    • 24 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 529 篇 理学
    • 318 篇 数学
    • 178 篇 统计学(可授理学、...
    • 162 篇 生物学
    • 106 篇 物理学
    • 66 篇 系统科学
    • 60 篇 化学
  • 161 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 48 篇 工商管理
  • 71 篇 医学
    • 57 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 31 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 26 篇 法学
    • 24 篇 社会学
  • 22 篇 农学
  • 18 篇 经济学
  • 6 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 63 篇 machine learning
  • 51 篇 deep learning
  • 44 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 artificial intel...
  • 20 篇 decision making
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 13 篇 machine learning...

机构

  • 62 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 21 篇 center for data ...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 65 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 22 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 13 篇 montavon grégoir...
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 carneiro gustavo

语言

  • 997 篇 英文
  • 98 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1098 条 记 录,以下是1-10 订阅
排序:
Reducing sequential change detection to sequential estimation  41
Reducing sequential change detection to sequential estimatio...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Shekhar, Shubhanshu Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We consider the problem of sequential change detection under minimal assumptions on the distribution generating the stream of observations. Formally, our goal is to design a scheme for detecting any changes in a param...
来源: 评论
Optimized Automated Stock Trading using DQN and Double DQN
Optimized Automated Stock Trading using DQN and Double DQN
收藏 引用
2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems, IACIS 2024
作者: Bharadwaj, Gurudutt S Pratap, David Darapaneni, Narayana Pes University Department of Computer Science Bengaluru India Great Learning Department of Data Science and Machine Learning Bengaluru India
Stock Portfolio management involves managing the buying, holding and selling decisions for the various stocks in the portfolio. There has been work where Reinforcement learning (RL) based actor-critic methods like Dee... 详细信息
来源: 评论
Functional linear non-Gaussian acyclic model for causal discovery
收藏 引用
Behaviormetrika 2024年 第2期51卷 567-588页
作者: Yang, Tian-Le Lee, Kuang-Yao Zhang, Kun Suzuki, Joe Graduate School of Engineering Science Osaka University Osaka Japan Department of Statistics Operations and Data Science Temple University Philadelphia United States Machine Learning Department Carnegie Mellon University Pittsburgh United States Machine Learning Department MBZUAI Abu Dhabi United Arab Emirates
In causal discovery, non-Gaussianity has been used to characterize the complete configuration of a linear non-Gaussian acyclic model (LiNGAM), encompassing both the causal ordering of variables and their respective co... 详细信息
来源: 评论
Foundations of Testing for Finite-Sample Causal Discovery  41
Foundations of Testing for Finite-Sample Causal Discovery
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Yan, Tom Xu, Ziyu Lipton, Zachary Machine Learning Department Carnegie Mellon University Pittsburgh United States Department of Statistics and Data Science Carnegie Mellon University Pittsburgh United States
Discovery of causal relationships is a fundamental goal of science and vital for sound decision making. As such, there has been considerable interest in causal discovery methods with provable guarantees. Existing work... 详细信息
来源: 评论
Image Recognition for Wildlife Conservation
Image Recognition for Wildlife Conservation
收藏 引用
2025 IEEE International Conference on Computational, Communication and Information Technology, ICCCIT 2025
作者: Charanya, P. Sridharan, S. Yuvan Shankar, S. Sriram, M. Yashvanth, K.P. Department of Artificial Intelligence and Machine Learning Coimbatore India Department of Artificial Intelligence and Data Science Coimbatore India
This study adopts an empirical approach to evaluate the efficacy of image processing methods in conservation efforts for animals. The initial phase involves the collection of data from various sources within the natur... 详细信息
来源: 评论
An Efficient Doubly-Robust Test for the Kernel Treatment Effect  37
An Efficient Doubly-Robust Test for the Kernel Treatment Eff...
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Martinez-Taboada, Diego Ramdas, Aaditya Kennedy, Edward H. Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
The average treatment effect, which is the difference in expectation of the counterfactuals, is probably the most popular target effect in causal inference with binary treatments. However, treatments may have effects ...
来源: 评论
Hybrid speech enhancement in modulation domain
收藏 引用
Multimedia Tools and Applications 2024年 1-31页
作者: P S, Praveen Kumar H S, Jayanna Technical Lead-Machine Learning Merit Data and Technology Tamil Nadu Chennai India Department of Information Science and Engineering Siddaganga Institute of Technology Karnataka Tumkur India
This paper presents a comprehensive study on speech enhancement (SE) techniques, particularly focusing on the utilization of the discrete cosine transform (DCT) in the modulation domain (MD) in combination with the mi... 详细信息
来源: 评论
Privacy Preserving data Imputation via Multi-party Computation for Medical Applications
Privacy Preserving Data Imputation via Multi-party Computati...
收藏 引用
2024 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2024
作者: Jentsch, Julia Ünal, Ali Burak Mağara, Şeyma Selcan Akgün, Mete Department of Computer Science Medical Data Privacy and Privacy Preserving Machine Learning Tübingen Germany
Handling missing data is crucial in machine learning, but many datasets contain gaps due to errors or non-response. Unlike traditional methods such as listwise deletion, which are simple but inadequate, the literature... 详细信息
来源: 评论
Using Generative Models to Improve Fire Detection Efficiency  10
Using Generative Models to Improve Fire Detection Efficiency
收藏 引用
10th International Conference on Information Technology and Nanotechnology, ITNT 2024
作者: Andriyanov, Nikita Kim, Alexandr Fao, Xenin Data Analysis And Machine Learning Department Financial University Under The Government Of The Russian Federation Moscow Russia Data Science Department Huazhong University Of Science And Technology Huazhong China
The paper discusses generative artificial intelligence technologies used to improve the efficiency of fire detection in satellite images. Different detector architectures are proposed and compared in terms of accuracy... 详细信息
来源: 评论
Low-Rank Optimal Transport through Factor Relaxation with Latent Coupling  38
Low-Rank Optimal Transport through Factor Relaxation with La...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Halmos, Peter Liu, Xinhao Gold, Julian Raphael, Benjamin J. Department of Computer Science Princeton University United States Center for Statistics and Machine Learning Princeton University United States
Optimal transport (OT) is a general framework for finding a minimum-cost transport plan, or coupling, between probability distributions, and has many applications in machine learning. A key challenge in applying OT to...
来源: 评论