咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是991-1000 订阅
排序:
Algorithmic Regularization in learning Deep Homogeneous Models: Layers are Automatically Balanced
arXiv
收藏 引用
arXiv 2018年
作者: Du, Simon S. Hu, Wei Lee, Jason D. Machine Learning Department School of Computer Science Carnegie Mellon University Computer Science Department Princeton University. Department of Data Sciences and Operations Marshall School of Business University of Southern California.
We study the implicit regularization imposed by gradient descent for learning multi-layer homogeneous functions including feed-forward fully connected and convolutional deep neural networks with linear, ReLU or Leaky ... 详细信息
来源: 评论
Cosmological constraints from the tomography of DES-Y3 galaxies with CMB lensing from ACT DR4
arXiv
收藏 引用
arXiv 2023年
作者: Marques, G.A. Madhavacheril, M.S. Darwish, O. Shaikh, S. Aguena, M. Alves, O. Avila, S. Bacon, D. Baxter, E.J. Bechtol, K. Becker, M.R. Bertin, E. Blazek, J. Bond, J. Richard Brooks, D. Cai, H. Calabrese, E. Rosell, A. Carnero Kind, M. Carrasco Carretero, J. Cawthon, R. Crocce, M. da Costa, L.N. Pereira, M.E.S. De Vicente, J. Desai, S. Diehl, H.T. Doel, P. Doux, C. Drlica-Wagner, A. Dunkley, J. Elvin-Poole, J. Everett, S. Ferraro, Simone Ferrero, I. Flaugher, B. Fosalba, P. García-Bellido, J. Gatti, M. Giannini, G. Gluscevic, V. Gruen, D. Gruendl, R.A. Gutierrez, G. Harrison, I. Hill, J. Colin Hinton, S.R. Hollowood, D.L. Honscheid, K. Huterer, D. Jeffrey, N. Kim, J. Kuehn, K. Lahav, O. Lemos, P. Lima, M. Huffenberger, K.M. MacCrann, N. Marshall, J.L. Mena-Fernández, J. Miquel, R. Mohr, J.J. Moodley, K. Muir, J. Naess, S. Nati, F. Page, L.A. Palmese, A. Malagón, A.A. Plazas Porredon, A. Prat, J. Qu, F.J. Raveri, M. Ross, A.J. Rykoff, E.S. Farren, G.S. Samuroff, S. Sanchez, E. Schubnell, M. Sehgal, N. Sevilla-Noarbe, I. Sheldon, E. Sherwin, B.D. Sifón, C. Smith, M. Spergel, D.N. Staggs, S.T. Suchyta, E. Tarle, G. To, C. Van Engelen, A. Weaverdyck, N. Weller, J. Wenzl, L. Wiseman, P. Wollack, E.J. Yanny, B. Fermi National Accelerator Laboratory P. O. Box 500 BataviaIL60510 United States Department of Physics Florida State University TallahasseeFL32306 United States Kavli Institute for Cosmological Physics University of Chicago ChicagoIL60637 United States Department of Physics and Astronomy University of Pennsylvania PhiladelphiaPA19104 United States Centre for the Universe Perimeter Institute WaterlooONN2L 2Y5 Canada Université de Genève Département de Physique Théorique Centre for Astroparticle Physics 24 quai Ernest-Ansermet Genève 4CH-1211 Switzerland School of Earth and Space Exploration Arizona State University TempeAZ85287 United States Laboratório Interinstitucional de e-Astronomia - LIneA Rua Gal. José Cristino 77 RJ Rio de Janeiro20921-400 Brazil Department of Physics University of Michigan Ann ArborMI48109 United States The Barcelona Institute of Science and Technology Campus UAB Barcelona Bellaterra08193 Spain Institute of Cosmology and Gravitation University of Portsmouth PortsmouthPO1 3FX United Kingdom Institute for Astronomy University of Hawai’i 2680 Woodlawn Drive HonoluluHI96822 United States Physics Department 2320 Chamberlin Hall University of Wisconsin-Madison 1150 University Avenue MadisonWI53706-1390 United States Argonne National Laboratory 9700 South Cass Avenue LemontIL60439 United States CNRS UMR 7095 Institut d’Astrophysique de Paris ParisF-75014 France Sorbonne Universités UPMC Univ Paris 06 UMR 7095 Institut d’Astrophysique de Paris ParisF-75014 France CITA University of Toronto TorontoONM5S 3H8 Canada Department of Physics & Astronomy University College London Gower Street LondonWC1E 6BT United Kingdom Department of Physics and Astronomy University of Pittsburgh PittsburghPA15260 United States School of Physics and Astronomy Cardiff University The Parade CardiffCF24 3AA United Kingdom Instituto de Astrofisica de Canarias Tenerife La LagunaE-38205 Spain Universidad de La Laguna
We present a measurement of the cross-correlation between the MAGLIM galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the At... 详细信息
来源: 评论
Smart Annotation Tool for Multi-sensor Gait-based Daily Activity data
Smart Annotation Tool for Multi-sensor Gait-based Daily Acti...
收藏 引用
IEEE International Conference on Pervasive Computing and Communications
作者: Christine F. Martindale Nils Roth Julius Hannink Sebastijan Sprager Bjoern M. Eskofier Machine Learning and Data Analytics Lab Computer Science Department Friedrich-Alexander University Erlangen-Nürnberg Germany Faculty of Computer and Information Science University of Ljubljana Slovenia
The monitoring of patients within a natural, home environment is important in order to close knowledge gaps in the treatment and care of neurodegenerative diseases, such as quantifying the daily fluctuation of Parkins... 详细信息
来源: 评论
Spatial 3D Matern priors for fast Whole-Brain fMRI analysis
arXiv
收藏 引用
arXiv 2019年
作者: Siden, Per Lindgren, Finn Bolinz, David Eklund, Anders Villani, Mattias Division of Statistics and Machine Learning Dept. of Computer and Information Science Linkoping University LinkopingSE-58183 School of Mathematics University of Edinburgh Peter Guthrie Tait Road EdinburghEH93FD United Kingdom Division of Applied Mathematics and Statistics Dept. of Mathematical Sciences Chalmers and University of Gothenburg GoteborgSE-41296 Division of Medical Informatics Dept. of Biomedical Engineering Center for Medical Image Science and Visualization Linkoping University LinkopingSE-58183 Department of Statistics Stockholm University StockholmSE-10691 Sweden
Bayesian whole-brain functional magnetic resonance imaging (fMRI) analysis with three-dimensional spatial smoothing priors have been shown to produce state-of-the-art activity maps without pre-smoothing the data. The ... 详细信息
来源: 评论
The importance of transparency and reproducibility in artificial intelligence research
arXiv
收藏 引用
arXiv 2020年
作者: Haibe-Kains, Benjamin Adam, George Alexandru Hosny, Ahmed Khodakarami, Farnoosh Waldron, Levi Wang, Bo McIntosh, Chris Kundaje, Anshul Greene, Casey S. Hoffman, Michael M. Leek, Jeffrey T. Huber, Wolfgang Brazma, Alvis Pineau, Joelle Tibshirani, Robert Hastie, Trevor Ioannidis, John P.A. Quackenbush, John Aerts, Hugo J.W.L. Princess Margaret Cancer Centre University Health Network TorontoON Canada Department of Medical Biophysics University of Toronto TorontoON Canada Department of Computer Science University of Toronto TorontoON Canada Ontario Institute for Cancer Research TorontoON Canada Vector Institute for Artificial Intelligence TorontoON Canada Program Brigham and Women's Hospital Harvard Medical School BostonMA United States Radiation Oncology and Radiology Dana-Farber Cancer Institute Brigham and Women's Department of Epidemiology and Biostatistics Institute for Implementation Science in Population Health CUNY Graduate School of Public Health and Health Policy New YorkNY United States Peter Munk Cardiac Centre University Health Network TorontoON Canada Hospital Harvard Medical School BostonMA United States Department of Genetics Stanford University School of Medicine StanfordCA United States Dept. of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Childhood Cancer Data Lab Alex's Lemonade Stand Foundation PhiladelphiaPA United States Department of Biostatistics Johns Hopkins Bloomberg School of Public Health BaltimoreMD United States European Molecular Biology Laboratory Genome Biology Unit Heidelberg Germany European Molecular Biology Laboratory European Bioinformatics Institute EMBL-EBI Hinxton United Kingdom McGill University MontrealQC Canada Montreal Institute for Learning Algorithms QC Canada StanfordCA United States Department of Biomedical Data Science Stanford University School of Medicine StanfordCA United States Departments of Medicine of Health Research and Policy and of Biomedical Data Science Stanford University School of Medicine StanfordCA United States Department of Statistics Stanford University School of Humanities and Sciences StanfordCA United States Department of Biostatistics Harvard T.H Chan School of Public Health BostonMA Un
In their study, McKinney et al. showed the high potential of artificial intelligence for breast cancer screening. However, the lack of detailed methods and computer code undermines its scientific value. We identify ob... 详细信息
来源: 评论
Metadata Concepts for Advancing the Use of Digital Health Technologies in Clinical Research
收藏 引用
Digital Biomarkers 2019年 第3期3卷 116-132页
作者: Badawy, Reham Hameed, Farhan Bataille, Lauren Little, Max A. Claes, Kasper Saria, Suchi Cedarbaum, Jesse M. Stephenson, Diane Neville, Jon Maetzler, Walter Espay, Alberto J. Bloem, Bastiaan R. Simuni, Tanya Karlin, Daniel R. School of Computer Science University of Birmingham Birmingham United Kingdom Digital Medicine and Pfizer Innovation Research Lab Early Clinical Development Pfizer Inc. CambridgeMA United States College of Computer and Information Science Northeastern University BostonMA United States Analytics Informatics and Business Intelligence Chief Digital Office Pfizer Inc. New YorkNY United States Michael J. Fox Foundation for Parkinson's Research New YorkNY United States Media Lab Massachusetts Institute of Technology CambridgeMA United States UCB Biopharma Brussels Belgium Machine Learning and Healthcare Laboratory Departments of Computer Science Statistics and Health Policy Malone Center for Engineering in Healthcare Armstrong Institute for Patient Safety and Quality Johns Hopkins University BaltimoreMD United States Biogen CambridgeMA United States Critical Path Institute TucsonAZ United States Clinical Data Interchange Standards Consortium AustinTX United States Department of Neurology Christian Albrecht University Kiel Germany James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders University of Cincinnati CincinnatiOH United States Department of Neurology Donders Institute for Brain Cognition and Behavior Radboud University Medical Center Nijmegen Netherlands Department of Neurology Gardner Center for Parkinson's Disease and Movement Disorders UC Gardner Neuroscience Institute University of Cincinnati CincinnatiOH United States Tufts University School of Medicine BostonMA United States HealthMode New YorkNY United States School of Engineering and Applied Science Aston University BirminghamB47ET United Kingdom
Digital health technologies (smartphones, smartwatches, and other body-worn sensors) can act as novel tools to aid in the diagnosis and remote objective monitoring of an individual's disease symptoms, both in clin... 详细信息
来源: 评论
Unintended consequences: Factors influencing oil palm plantation expansion
收藏 引用
IOP Conference Series: Earth and Environmental science 2020年 第1期538卷
作者: S Wongsai J Keson N Wongsai Thammasat University Research Unit in Data Learning Division of Mathematics and Statistics Faculty of Science and Technology Thammasat University Pathumthani 12120 Thailand Faculty of Technology and Environment Prince of Songkla University Phuket Campus Phuket 83120 Thailand Department of Mathematics and Computer Science Faculty of Science and Technology Prince of Songkla University Pattani Campus Pattani 94000 Thailand
We investigated the landscape variables affecting the current dramatic expansion of oil palm plantations in Lam Thap district Krabi Province Thailand. THEOS satellite data was used to map land use classifications usin...
来源: 评论
On ADMM in deep learning: Convergence and saturation-avoidance
arXiv
收藏 引用
arXiv 2019年
作者: Zeng, Jinshan Lin, Shao-Bo Yao, Yuan Zhou, Ding-Xuan School of Computer and Information Engineering Jiangxi Normal University Nanchang China Liu Bie Ju Centre for Mathematical Sciences City University of Hong Kong Hong Kong Hong Kong Department of Mathematics Hong Kong University of Science and Technology Hong Kong Hong Kong Center of Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University Xi’an China School of Data Science Department of Mathematics City University of Hong Kong Hong Kong Hong Kong
In this paper, we develop an alternating direction method of multipliers (ADMM) for deep neural networks training with sigmoid-type activation functions (called sigmoid-ADMM pair), mainly motivated by the gradient-fre... 详细信息
来源: 评论
Generating diffusion MRI scalar maps from T1 weighted images using generative adversarial networks
arXiv
收藏 引用
arXiv 2018年
作者: Gu, Xuan Knutsson, Hans Nilsson, Markus Eklund, Anders Division of Medical Informatics Department of Biomedical Engineering Division of Statistics and Machine learning Department of Computer and Information Science Linköping University Linköping Sweden Department of Clinical Sciences Radiology Lund University Lund Sweden
Diffusion magnetic resonance imaging (diffusion MRI) is a non-invasive microstructure assessment technique. Scalar measures, such as FA (fractional anisotropy) and MD (mean diffusivity), quantifying micro-structural t... 详细信息
来源: 评论
Biomedical image analysis competitions: The state of current participation practice
arXiv
收藏 引用
arXiv 2022年
作者: Eisenmann, Matthias Reinke, Annika Weru, Vivienn Tizabi, Minu Dietlinde Isensee, Fabian Adler, Tim J. Godau, Patrick Cheplygina, Veronika Kozubek, Michal Maier-Hein, Klaus Jäger, Paul F. Kopp-Schneider, Annette Maier-Hein, Lena Ali, Sharib Gupta, Anubha Kybic, Jan Noble, Alison de Solórzano, Carlos Ortiz Pachade, Samiksha Petitjean, Caroline Sage, Daniel Wei, Donglai Wilden, Elizabeth Alapatt, Deepak Andrearczyk, Vincent Baid, Ujjwal Bakas, Spyridon Balu, Niranjan Bano, Sophia Bawa, Vivek Singh Bernal, Jorge Bodenstedt, Sebastian Casella, Alessandro Choi, Jinwook Commowick, Olivier Daum, Marie Depeursinge, Adrien Dorent, Reuben Egger, Jan Eichhorn, Hannah Engelhardt, Sandy Ganz, Melanie Girard, Gabriel Hansen, Lasse Heinrich, Mattias Heller, Nicholas Hering, Alessa Huaulmé, Arnaud Kim, Hyunjeong Li, Hongwei Bran Landman, Bennett Li, Jianning Ma, Jun Martel, Anne Martín-Isla, Carlos Menze, Bjoern Nwoye, Chinedu Innocent Oreiller, Valentin Padoy, Nicolas Pati, Sarthak Payette, Kelly Sudre, Carole van Wijnen, Kimberlin Vardazaryan, Armine Vercauteren, Tom Wagner, Martin Wang, Chuanbo Yap, Moi Hoon Yu, Zeyun Yuan, Chun Zenk, Maximilian Zia, Aneeq Zimmerer, David Bao, Rina Choi, Chanyeol Cohen, Andrew Dzyubachyk, Oleh Galdran, Adrian Gan, Tianyuan Guo, Tianqi Gupta, Pradyumna Haithami, Mahmood Ho, Edward Jang, Ikbeom Li, Zhili Luo, Zhengbo Lux, Filip Makrogiannis, Sokratis Müller, Dominik Oh, Young-Tack Pang, Subeen Pape, Constantin Polat, Gorkem Reed, Charlotte Rosalie Ryu, Kanghyun Scherr, Tim Thambawita, Vajira Wang, Haoyu Wang, Xinliang Xu, Kele Yeh, Hung Yeo, Doyeob Yuan, Yixuan Zeng, Yan Zhao, Xin Abbing, Julian Adam, Jannes Adluru, Nagesh Agethen, Niklas Ahmed, Salman Al Khalil, Yasmina Alenyà, Mireia Alhoniemi, Esa An, Chengyang Arega, Tewodros Weldebirhan Avisdris, Netanell Aydogan, Dogu Baran Bai, Yingbin Calisto, Maria Baldeon Basaran, Berke Doga Beetz, Marcel Bian, Hao Blansit, Kevin Bloch, Louise Bohnsack, Robert Bosticardo, Sara Breen, Jack Brudfors, Mikael Brüngel, Raphael Cabezas, Mariano Cacciola, Alb Heidelberg Division of Intelligent Medical Systems Germany Heidelberg HI Helmholtz Imaging Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Heidelberg Division of Biostatistics Germany Heidelberg Division of Medical Image Computing Germany Heidelberg HI Applied Vision Lab Germany IT University of Copenhagen Copenhagen Denmark Centre for Biomedical Image Analysis Masaryk University Brno Czech Republic Heidelberg Interactive Machine Learning Group Germany Faculty of Mathematics and Computer Science and Medical Faculty Heidelberg University Heidelberg Germany NCT Heidelberg DKFZ University Hospital Heidelberg Germany School of Computing University of Leeds Leeds United Kingdom SBILab Department of ECE IIIT-Delhi India Faculty of Electrical Engineering Czech Technical University Prague Czech Republic Institute of Biomedical Engineering University of Oxford United Kingdom Center for Applied Medical Research Pamplona Spain Shri Guru Gobind Singhji Institute of Engineering and Technology Maharashtra Nanded India Université de Rouen Normandie France Lausanne Switzerland School of Engineering and Applied Science Harvard University United States ICube University of Strasbourg CNRS France Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Techno-Pôle 3 Sierre3960 Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Rue du Bugnon 46 LausanneCH-1011 Switzerland University of Pennsylvania PhiladelphiaPA United States Department of Radiology University of Washington United States Wellcome EPSRC Centre for Interventional and Surgical Sciences University College London London United Kingdom Visual Artificial Intelligence Lab Oxford Brookes University Oxford United Kingdom Universitat Autònoma de Barcelona & Computer Vision Center Spain Dresden Fetscherstraße 74 PF 64 Dresden01307 Germany
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bott... 详细信息
来源: 评论