咨询与建议

限定检索结果

文献类型

  • 672 篇 期刊文献
  • 420 篇 会议
  • 4 册 图书

馆藏范围

  • 1,096 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 681 篇 工学
    • 476 篇 计算机科学与技术...
    • 413 篇 软件工程
    • 142 篇 生物工程
    • 96 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 94 篇 生物医学工程(可授...
    • 70 篇 光学工程
    • 55 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 528 篇 理学
    • 317 篇 数学
    • 178 篇 统计学(可授理学、...
    • 162 篇 生物学
    • 106 篇 物理学
    • 66 篇 系统科学
    • 60 篇 化学
  • 160 篇 管理学
    • 82 篇 图书情报与档案管...
    • 78 篇 管理科学与工程(可...
    • 48 篇 工商管理
  • 71 篇 医学
    • 57 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 31 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 22 篇 农学
  • 17 篇 经济学
  • 6 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 63 篇 machine learning
  • 51 篇 deep learning
  • 44 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 artificial intel...
  • 20 篇 decision making
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 13 篇 machine learning...

机构

  • 62 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 21 篇 center for data ...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 65 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 22 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 13 篇 montavon grégoir...
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 carneiro gustavo

语言

  • 995 篇 英文
  • 98 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1096 条 记 录,以下是1031-1040 订阅
排序:
A defense of using resting state fMRI as null data for estimating false positive rates
arXiv
收藏 引用
arXiv 2017年
作者: Nichols, Thomas E. Eklund, Anders Knutsson, Hans Department of Statistics University of Warwick CoventryCV4 7AL United Kingdom WMG University of Warwick CoventryCV4 7AL United Kingdom Division of Medical Informatics Department of Biomedical Engineering Linköping University LinköpingS-581 85 Sweden Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University LinköpingS-581 83 Sweden Center for Medical Image Science and Visualization Linköping University LinköpingS-581 83 Sweden
A recent Editorial by Slotnick (2017) reconsiders the findings of our paper on the accuracy of false positive rate control with cluster inference in fMRI (Eklund et al, 2016), in particular criticising our use of rest... 详细信息
来源: 评论
The Multiple Quantile Graphical Model  16
The Multiple Quantile Graphical Model
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Alnur Ali J. Zico Kolter Ryan J. Tibshirani Machine Learning Department Carnegie Mellon University Computer Science Department Carnegie Mellon University Department of Statistics Carnegie Mellon University
We introduce the Multiple Quantile Graphical Model (MQGM), which extends the neighborhood selection approach of Meinshausen and Buehlmann for learning sparse graphical models. The latter is defined by the basic subpro...
来源: 评论
BIISQ: Bayesian nonparametric discovery of Isoforms and Individual Specific Quantification
arXiv
收藏 引用
arXiv 2017年
作者: Aguiar, Derek Cheng, Li-Fang Dumitrascu, Bianca Mordelet, Fantine Pai, Athma A. Engelhardt, Barbara E. Department of Computer Science Princeton University PrincetonNJ United States Department of Electrical Engineering Princeton University PrincetonNJ United States Lewis Sigler Institute Princeton University PrincetonNJ United States Institute for Genome Sciences and Policy Duke University DurhamNC United States Department of Biology Massachusetts Institute of Technology CambridgeMA United States Center for Statistics and Machine Learning Princeton University PrincetonNJ United States
Most human protein-coding genes can be transcribed into multiple possible distinct mRNA isoforms. These alternative splicing patterns encourage molecular diversity and dysregulation of isoform expression plays an impo... 详细信息
来源: 评论
Simple, robust and optimal ranking from pairwise comparisons
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2017年 第1期18卷
作者: Nihar B. Shah Martin J. Wainwright Machine Learning Department and Computer Science Department Carnegie Mellon University Pittsburgh PA Department of Electrical Engineering and Computer Sciences and Department of Statistics University of California Berkeley CA
We consider data in the form of pairwise comparisons of n items, with the goal of identifying the top k items for some value of k < n, or alternatively, recovering a ranking of all the items. We analyze the Borda c... 详细信息
来源: 评论
learning instrumental variables with structural and non-gaussianity assumptions
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2017年 第1期18卷
作者: Ricardo Silva Shohei Shimizu Department of Statistical Science and Centre for Computational Statistics and Machine Learning University College London UK The Center for Data Science Education and Research Shiga University Shiga Japan and The Institute of Scientific and Industrial Research Osaka University Japan
learning a causal effect from observational data requires strong assumptions. One possible method is to use instrumental variables, which are typically justified by background knowledge. It is possible, under further ... 详细信息
来源: 评论
Generalized póya urn for time-varying pitman-yor processes
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2017年 第1期18卷
作者: François Caron Willie Neiswanger Frank Wood Arnaud Doucet Manuel Davy Department of Statistics University of Oxford Oxford UK Machine Learning Department Carnegie Mellon University Pittsburgh Department of Engineering Science University of Oxford Oxford UK VEKIA Lille France
This article introduces a class of first-order stationary time-varying Pitman-Yor processes. Subsuming our construction of time-varying Dirichlet processes presented in (Caron et al., 2007), these models can be used f... 详细信息
来源: 评论
Scalable Adaptive Stochastic Optimization Using Random Projections  16
Scalable Adaptive Stochastic Optimization Using Random Proje...
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Gabriel Krummenacher Brian Mc Williams Yannic Kilcher Joachim M. Buhmann Nicolai Meinshausen Institute for Machine Learning Department of Computer Science ETH Zurich Switzerland Disney Research Zurich Switzerland Seminar for Statistics Department of Mathematics ETH Zurich Switzerland
Adaptive stochastic gradient methods such as AdaGrad have gained popularity in particular for training deep neural networks. The most commonly used and studied variant maintains a diagonal matrix approximation to seco... 详细信息
来源: 评论
Adaptive randomized dimension reduction on massive data
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2017年 第1期18卷
作者: Gregory Darnell Stoyan Georgiev Sayan Mukherjee Barbara E. Engelhardt Lewis-Sigler Institute Princeton University Princeton NJ Google Palo Alto CA Departments of Statistical Science Mathematics and Computer Science Duke University Durham NC Department of Computer Science Center for Statistics and Machine Learning Princeton University Princeton NJ
The scalability of statistical estimators is of increasing importance in modern applications. One approach to implementing scalable algorithms is to compress data into a low dimensional latent space using dimension re... 详细信息
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROscience 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论
Reply to Brown and Behrmann, Cox, et al., and Kessler et al.: data and code sharing is the way forward for fMRI
收藏 引用
Proceedings of the National Academy of sciences of the United States of America 2017年 第17期114卷 E3374-E3375页
作者: Anders Eklund Thomas E Nichols Hans Knutsson Division of Medical Informatics Department of Biomedical Engineering Linköping University S-581 85 Linköping Sweden anders.eklund@liu.se. Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University S-581 83 Linköping Sweden. Center for Medical Image Science and Visualization Linköping University S-581 83 Linköping Sweden. Department of Statistics University of Warwick Coventry CV4 7AL United Kingdom. WMG University of Warwick Coventry CV4 7AL United Kingdom. Division of Medical Informatics Department of Biomedical Engineering Linköping University S-581 85 Linköping Sweden.
来源: 评论