咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是151-160 订阅
排序:
Impact of Immersive Technology on Physiological Parameters in Psychiatric Disorders
Impact of Immersive Technology on Physiological Parameters i...
收藏 引用
International Conference on System Modeling & Advancement in Research Trends (SMART)
作者: Anjali Kataria Gurjinder Singh Jasminder Sandhu Chitkara Institute of Engineering and Technology Punjab India Department of Machine Learning and Data Science IILM University Noida
The brain is an essential component that regulates the general functioning of the body. The brain consists of millions of neurons that govern human behavior in response to sensory stimuli. To understand the mental fun... 详细信息
来源: 评论
The Mathematics of Dots and Pixels: On the Theoretical Foundations of Image Halftoning
arXiv
收藏 引用
arXiv 2024年
作者: Krahmer, Felix Veselovska, Anna Technical University of Munich Department of Mathematics and Munich Data Science Institute Munich Center for Machine Learning Germany
The evolution of image halftoning, from its analog roots to contemporary digital methodologies, encapsulates a fascinating journey marked by technological advancements and creative innovations. Yet the theoretical und... 详细信息
来源: 评论
Optimization and Benchmarking of Convolutional Networks with Quantization and OpenVINO in Baggage Image Recognition  8
Optimization and Benchmarking of Convolutional Networks with...
收藏 引用
8th International Conference on Information Technology and Nanotechnology, ITNT 2022
作者: Andriyanov, Nikita Papakostas, George Financial University under the Government of the Russian Federation Department of Data Analysis and Machine Learning Moscow Russia International Hellenic University Department of Computer Science Thessaloniki Greece
The paper is devoted to the study of the neural networks inference acceleration using the weights quantization and Intel OpenVINO Toolkit. At the same time, the study considers block architecture convolutional network... 详细信息
来源: 评论
Smart Telemedicine Using IoT by Integrating 5G and Block-Chain Techniques  6
Smart Telemedicine Using IoT by Integrating 5G and Block-Cha...
收藏 引用
6th International Conference on Contemporary Computing and Informatics, IC3I 2023
作者: Choudhary, Shailee Lohmor Dixit, Rinku Sharma Das, Deepak Ranjith Singh, K. Dinesh Babu, V. New Delhi Institute of Management Department of Artificial Intelligence & Machine Learning - Data Science New Delhi India Karunya Institute of Science and Technology Agricultural Engineering Coimbatore India Karpagam Academy of Higher Education Department of Computer Science Coimbatore India Karpagam Institute of Technology Department of Information Technology Coimbatore India
There are many medical applications for the Internet of Health Things (IoHT). In order to offer patients with more intelligent and effective health diagnoses, contemporary IoHT incorporates wellness items such sensors... 详细信息
来源: 评论
Exploring Neural Network Landscapes: Star-Shaped and Geodesic Connectivity
arXiv
收藏 引用
arXiv 2024年
作者: Lin, Zhanran Li, Puheng Wu, Lei Department of Statistics and Data Science Wharton School University of Pennsylvania United States Department of Statistics Stanford University United States School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China
One of the most intriguing findings in the structure of neural network landscape is the phenomenon of mode connectivity [FB17, DVSH18]: For two typical global minima, there exists a path connecting them without barrie... 详细信息
来源: 评论
Feature Importance: A Closer Look at Shapley Values and LOCO
arXiv
收藏 引用
arXiv 2023年
作者: Verdinelli, Isabella Wasserman, Larry Department of Statistics and Data Science Carnegie Mellon University PittsburghPA United States Machine Learning Department Carnegie Mellon University PA United States
There is much interest lately in explainability in statistics and machine learning. One aspect of explainability is to quantify the importance of various features (or covariates). Two popular methods for defining vari... 详细信息
来源: 评论
An Improved Finite-time Analysis of Temporal Difference learning with Deep Neural Networks  41
An Improved Finite-time Analysis of Temporal Difference Lear...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Ke, Zhifa Wen, Zaiwen Zhang, Junyu Center for Data Science Peking University China Beijing International Center for Mathematical Research Center for Machine Learning Research Changsha Institute for Computing and Digital Economy Beijing China Department of Industrial Systems Engineering and Management National University of Singapore Singapore
Temporal difference (TD) learning algorithms with neural network function parameterization have well-established empirical success in many practical large-scale reinforcement learning tasks. However, theoretical under... 详细信息
来源: 评论
Low-Rank Optimal Transport through Factor Relaxation with Latent Coupling
arXiv
收藏 引用
arXiv 2024年
作者: Halmos, Peter Liu, Xinhao Gold, Julian Raphael, Benjamin J. Department of Computer Science Princeton University United States Center for Statistics and Machine Learning Princeton University United States
Optimal transport (OT) is a general framework for finding a minimum-cost transport plan, or coupling, between probability distributions, and has many applications in machine learning. A key challenge in applying OT to... 详细信息
来源: 评论
Model and Feature Diversity for Bayesian Neural Networks in Mutual learning  37
Model and Feature Diversity for Bayesian Neural Networks in ...
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Pham, Cuong Nguyen, Cuong C. Le, Trung Phung, Dinh Carneiro, Gustavo Do, Thanh-Toan Department of Data Science and AI Monash University Australia Australian Institute for Machine Learning University of Adelaide Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom VinAI Viet Nam
Bayesian Neural Networks (BNNs) offer probability distributions for model parameters, enabling uncertainty quantification in predictions. However, they often underperform compared to deterministic neural networks. Uti... 详细信息
来源: 评论
ON THE EXISTENCE OF POWERFUL P-VALUES AND E-VALUES FOR COMPOSITE HYPOTHESES
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Zhenyuan Ramdas, Aaditya Wang, Ruodu Department of Mathematics Stanford University United States Depts. of Statistics & Data Science and Machine Learning Carnegie Mellon Univ. United States Department of Statistics and Actuarial Science University of Waterloo Canada
Given a composite null P and composite alternative Q, when and how can we construct a p-value whose distribution is exactly uniform under the null, and stochastically smaller than uniform under the alternative? Simila... 详细信息
来源: 评论