咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是331-340 订阅
排序:
machine learning With data Assimilation and Uncertainty Quantification for Dynamical Systems:A Review
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第6期10卷 1361-1387页
作者: Sibo Cheng César Quilodrán-Casas Said Ouala Alban Farchi Che Liu Pierre Tandeo Ronan Fablet Didier Lucor Bertrand Iooss Julien Brajard Dunhui Xiao Tijana Janjic Weiping Ding Yike Guo Alberto Carrassi Marc Bocquet Rossella Arcucci Data Science Institute Department of ComputingImperial College LondonSW72AZ London Department of Earth Science and Engineering Imperial College LondonSW72AZ London Department of Computer Science and Engineering Hong Kong University of Science and TechnologyHong Kong 999077China the IMT Atlantique Lab-STICCUMR CNRS 6285France and OdysseyInria/IMTFrance.P.Tandeo is also with RIKEN Center for Computational ScienceKobeJapan the CEREA École des Ponts and EDF R&Dîle-de-FranceFrance the Laboratoire Interdisciplinaire des Sciences du Numérique CNRSParis-Saclay UniversityF-91403OrsayFrance the Electricitéde France(EDF) 78401 ChatouFranceInstitut de Mathématiques de Toulouse31062 ToulouseFrance and SINCLAIR AI LabSaclayFrance the Sorbonne University ParisFranceand also with Nansen Environmental and Remote Sensing Center(NERSC)BergenNorway the School of Mathematical Sciences Tongji UniversityShanghai 200092China the Mathematical Institute for Machine Learning and Data Science KU Eichstaett-IngolstadtBavariaGermany the School of Information Science and Technology Nantong UniversityNantong 226019China the Department of Physics and Astronomy“Augusto Righi” University of Bologna40124 BolognaItaly
data assimilation(DA)and uncertainty quantification(UQ)are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal *** applications span from computational fluid dynamics(CFD)... 详细信息
来源: 评论
Vector databases and Vector Embeddings-Review
Vector Databases and Vector Embeddings-Review
收藏 引用
2023 International Workshop on Artificial Intelligence and Image Processing, IWAIIP 2023
作者: Kukreja, Sanjay Kumar, Tarun Bharate, Vishal Purohit, Amit Dasgupta, Abhijit Guha, Debashis Sp Jain School of Global Management Department of Machine Learning Mumbai India EClerx Services Ltd. Coe AI-ML Chandigarh India EClerx Services Ltd. Coe AI-ML Pune India EClerx Services Ltd. Coe AI-ML Mumbai India Sp Jain School of Global Management Department of Data Science Mumbai India
This research paper aims to present a comprehensive survey of vector databases and vector embedding techniques. A concise overview of the evolution, architecture, advantages and challenges of vector databases are pres... 详细信息
来源: 评论
A $4\times 4$ Millimeter-Wave Antenna Based on a Higher Order Mode in a Sub-mode Microwave SIW Strucutre for Recent 5G Applications
A $4\times 4$ Millimeter-Wave Antenna Based on a Higher Orde...
收藏 引用
European Conference on Antennas and Propagation, EuCAP
作者: Amjaad T. Altakhaineh Saqer S. Alja'afreh Chaoyun Song Data Science and Machine Learning Dept Pioneers International Academy Amman Jordan Dept of Electrical Engineering Mutah University Alkarak Jordan Department of Engineering King's College London London United Kingdom
This paper presents a single structure, multi-port antenna for 5G millimeter wave (mmWave) applications. The proposed antenna is constructed by exploiting the higher-order modes of a fraction-mode microwave substrate-... 详细信息
来源: 评论
Assessing Potential of Organizations with Fuzzy Entropy
收藏 引用
Operations Research Forum 2023年 第1期4卷 11页
作者: Aggarwal, Manish Krishankumar, R. Ravichandran, K.S. Senapati, T. Yager, R.R. School of Artificial Intelligence and Data Science IIT Jodhpur Jodhpur India Digital Humanities IIT Jodhpur Jodhpur India Department of Computer Science and Engineering Amrita School of Computing Amrita Vishwa Vidyapeetham Coimbatore India Department of Mathematics Amrita School of Physical Sciences Amrita Vishwa Vidyapeetham Coimbatore India School of Mathematics and Statistics Southwest University Chongqing Beibei 400715 China Machine Intelligence Institute Iona College New Rochelle 10801 NY United States
Assessing the performance of organizations in the near future has been a challenging problem because of the factors of subjective assessment of the uncertainty. To cater to such applications, a novel form of fuzzy ent... 详细信息
来源: 评论
Sharp empirical Bernstein bounds for the variance of bounded random variables
arXiv
收藏 引用
arXiv 2025年
作者: Martinez-Taboada, Diego Ramdas, Aaditya Department of Statistics & Data Science United States Machine Learning Department Carnegie Mellon University United States
Much recent effort has focused on deriving "empirical Bernstein" confidence sets for the mean µ of bounded random variables, that adapts to unknown variance V(X). In this paper, we provide fully empiric... 详细信息
来源: 评论
learning Latent Trajectories in Developmental Time Series with Hidden-Markov Optimal Transport  29th
Learning Latent Trajectories in Developmental Time Series w...
收藏 引用
29th International Conference on Research in Computational Molecular Biology, RECOMB 2025
作者: Halmos, Peter Gold, Julian Liu, Xinhao Raphael, Benjamin J. Department of Computer Science Princeton University 35 Olden St PrincetonNJ08544 United States Center for Statistics and Machine Learning Princeton University 26 Prospect Ave PrincetonNJ08544 United States
Deriving the sequence of transitions between cell types, or differentiation events, that occur during organismal development is one of the fundamental challenges in developmental biology. Single-cell and spatial seque... 详细信息
来源: 评论
Automating the Selection of Proxy Variables of Unmeasured Confounders
arXiv
收藏 引用
arXiv 2024年
作者: Xie, Feng Chen, Zhengming Luo, Shanshan Miao, Wang Cai, Ruichu Geng, Zhi Department of Applied Statistics Beijing Technology and Business University Beijing China School of Computer Science Guangdong University of Technology Guangzhou510006 China Machine Learning Department Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates Department of Probability and Statistics Peking University Beijing China
Recently, interest has grown in the use of proxy variables of unobserved confounding for inferring the causal effect in the presence of unmeasured confounders from observational data. One difficulty inhibiting the pra... 详细信息
来源: 评论
How robust is randomized blind deconvolution via nuclear norm minimization against adversarial noise?
arXiv
收藏 引用
arXiv 2023年
作者: Kostin, Julia Krahmer, Felix Stöger, Dominik Technical University of Munich Department of Mathematics Germany Munich Center for Machine Learning Germany Technical University of Munich Munich Data Science Institute Germany Germany
In this paper, we study the problem of recovering two unknown signals from their convolution, which is commonly referred to as blind deconvolution. Reformulation of blind deconvolution as a low-rank recovery problem h... 详细信息
来源: 评论
Method for Finding an Investment Strategy in the Case of a Sparse Covariance Matrix
Method for Finding an Investment Strategy in the Case of a S...
收藏 引用
International Conference on Management of Large-Scale System Development (MLSD)
作者: Victor Gorelik Tatiana Zolotova Department of Simulation Systems and Operations Research Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences Moscow Russia Department of Data Analysis and Machine Learning Financial University under the Government of the Russian Federation Moscow Russia
An optimality principle is proposed for making investment decisions based on efficiency and risk assessments with a sparse covariance matrix. The method is implemented as a program with a graphical interface and demon... 详细信息
来源: 评论
Enhancing Agricultural Yield Predictions with Real-Time IoT Sensor data and machine learning Integration
Enhancing Agricultural Yield Predictions with Real-Time IoT ...
收藏 引用
IoT Based Control Networks and Intelligent Systems (ICICNIS), International Conference on
作者: Chandiraprakash. N A. Chinnasamy M Ashok Department of Artificial intelligence and machine learning Malla Reddy College of Engineering Hyderabad India Department of Data Science and Business Systems school of computing SRMIST kattankulathur campus Chennai India Malla Reddy College of Engineering Hyderabad India
This research extends previous studies on the effects of climate change on agricultural yield predictions by integrating advanced machine learning (ML) methods with real time environmental sensing data. It builds on t... 详细信息
来源: 评论