咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是361-370 订阅
排序:
Your Transformer May Not be as Powerful as You Expect  36
Your Transformer May Not be as Powerful as You Expect
收藏 引用
36th Conference on Neural Information Processing Systems, NeurIPS 2022
作者: Luo, Shengjie Li, Shanda Zheng, Shuxin Liu, Tie-Yan Wang, Liwei He, Di National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University China Machine Learning Department School of Computer Science Carnegie Mellon University United States Microsoft Research United States Center for Data Science Peking University China Zhejiang Lab China
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding... 详细信息
来源: 评论
Distribution-free binary classification: Prediction sets, confidence intervals and calibration  34
Distribution-free binary classification: Prediction sets, co...
收藏 引用
34th Conference on Neural Information Processing Systems, NeurIPS 2020
作者: Gupta, Chirag Podkopaev, Aleksandr Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States
We study three notions of uncertainty quantification—calibration, confidence intervals and prediction sets—for binary classification in the distribution-free setting, that is without making any distributional assump... 详细信息
来源: 评论
Personalised Speech-Based PTSD Prediction Using Weighted-Instance learning  46
Personalised Speech-Based PTSD Prediction Using Weighted-Ins...
收藏 引用
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
作者: Kathan, Alexander Amiriparian, Shahin Triantafyllopoulos, Andreas Gebhard, Alexander Milkus, Sabrina Hohmann, Jonas Muderlak, Pauline Schottdorf, Jürgen Musil, Richard Schuller, Björn W. University of Augsburg Eihw - Embedded Intelligence for Healthcare and Wellbeing Germany Mri Technical Univsersity of Munich Chi - Health Informatics Germany Mcml - Munich Center for Machine Learning Germany University Hospital Lmu Munich Department of Psychiatry and Psychotherapy Germany Zentrumspraxis Friedberg Germany Imperial College London Glam - Group on Language Audio & Music United Kingdom Mdsi - Munich Data Science Institute Germany
Post-traumatic stress disorder (PTSD) is a prevalent disorder that can develop in people who have experienced very stressful, shocking, or distressing events. It has great influence on peoples' daily life and can ... 详细信息
来源: 评论
learning Discrete Latent Variable Structures with Tensor Rank Conditions
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Zhengming Cai, Ruichu Xie, Feng Qiao, Jie Wu, Anpeng Li, Zijian Hao, Zhifeng Zhang, Kun School of Computer Science Guangdong University of Technology China Machine Learning Department Mohamed bin Zayed University of Artificial Intelligence United Arab Emirates Department of Applied Statistics Beijing Technology and Business University China Department of Computer Science and Technology Zhejiang University China Department of Philosophy Carnegie Mellon University United States
Unobserved discrete data are ubiquitous in many scientific disciplines, and how to learn the causal structure of these latent variables is crucial for uncovering data patterns. Most studies focus on the linear latent ... 详细信息
来源: 评论
On conditional versus marginal bias in multi-armed bandits  37
On conditional versus marginal bias in multi-armed bandits
收藏 引用
37th International Conference on machine learning, ICML 2020
作者: Shin, Jaehyeok Rinaldo, Alessandro Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
The bias of the sample means of the arms in multiarmed bandits is an important issue in adaptive data analysis that has recently received considerable attention in the literature. Existing results relate in precise wa... 详细信息
来源: 评论
Empirical Macroeconomics and DSGE Modeling in Statistical Perspective
arXiv
收藏 引用
arXiv 2022年
作者: McDonald, Daniel J. Shalizi, Cosma Rohilla Department of Statistics University of British Columbia VancouverBC Canada Department of Statistics and Data Science and of Machine Learning Carnegie Mellon University PittsburghPA United States Santa Fe Institute Santa FeNM United States
Dynamic stochastic general equilibrium (DSGE) models have been an ubiquitous, and controversial, part of macroeconomics for decades. In this paper, we approach DSGEs purely as statstical models. We do this by applying... 详细信息
来源: 评论
Stock Market Forecasting Using LSTM
Stock Market Forecasting Using LSTM
收藏 引用
Communication & Computing (WCONF), World Conference on
作者: J. Aswini Dinesh S C. Lakshmipriya Lokesh Krishnaa M Siva Subramanian R Dept of Artificial Intelligence & Machine Learning Saveetha Engineering College(Autonomous) Department of Artificial Intelligence and Data Science Saveetha Engineering College(Autonomous) Department CSE S.A. Engineering College Department CSE R.M.K College of Engineering and Technology
In this research paper, a novel methodology for forecasting stock market trends is presented: the utilization of Long Short-Term Memory networks, which are a part of RNN network. This model effectively incorporates th... 详细信息
来源: 评论
Model and Feature Diversity for Bayesian Neural Networks in Mutual learning
arXiv
收藏 引用
arXiv 2024年
作者: Pham, Cuong Nguyen, Cuong C. Le, Trung Phung, Dinh Carneiro, Gustavo Do, Thanh-Toan Department of Data Science and AI Monash University Australia Australian Institute for Machine Learning University of Adelaide Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom VinAI Viet Nam
Bayesian Neural Networks (BNNs) offer probability distributions for model parameters, enabling uncertainty quantification in predictions. However, they often underperform compared to deterministic neural networks. Uti... 详细信息
来源: 评论
Sampling Strategies for Compressive Imaging Under Statistical Noise
Sampling Strategies for Compressive Imaging Under Statistica...
收藏 引用
2023 International Conference on Sampling Theory and Applications, SampTA 2023
作者: Hoppe, Frederik Krahmer, Felix Verdun, Claudio Mayrink Menzel, Marion I. Rauhut, Holger Rwth Aachen University Chair of Mathematics of Information Processing Aachen Germany Technical University of Munich Department of Mathematics Munich Germany Munich Center for Machine Learning Munich Germany Technical University of Munich Munich Data Science Institute Germany Technische Hochschule Ingolstadt AImotion Bavaria Ingolstadt Germany Technical University of Munich Department of Physics Garching Germany Ge Healthcare Munich Germany
Most of the compressive sensing literature in signal processing assumes that the noise present in the measurement has an adversarial nature, i.e., it is bounded in a certain norm. At the same time, the randomization i... 详细信息
来源: 评论
Regularized Shannon sampling formulas related to the special affine Fourier transform
arXiv
收藏 引用
arXiv 2023年
作者: Filbir, Frank Tasche, Manfred Veselovska, Anna Institute of Mathematics University of Rostock Germany Department of Mathematics Munich Data Science Institute Technical University of Munich Munich Center for Machine Learning Garching/Munich Germany
In this paper, we present new regularized Shannon sampling formulas related to the special affine Fourier transform (SAFT). These sampling formulas use localized sampling with special compactly supported window functi... 详细信息
来源: 评论