咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是421-430 订阅
排序:
Nonparametric Two-Sample Testing by Betting
arXiv
收藏 引用
arXiv 2021年
作者: Shekhar, Shubhanshu Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We study the problem of designing consistent sequential two-sample tests in a nonparametric setting. Guided by the principle of testing by betting, we reframe this task into that of selecting a sequence of payoff func...
来源: 评论
TOPOGRAPH: AN EFFICIENT GRAPH-BASED FRAMEWORK FOR STRICTLY TOPOLOGY PRESERVING IMAGE SEGMENTATION
arXiv
收藏 引用
arXiv 2024年
作者: Lux, Laurin Berger, Alexander H. Weers, Alexander Stucki, Nico Rueckert, Daniel Bauer, Ulrich Paetzold, Johannes C. School of Computation Information and Technology Technical University of Munich Germany Department of Computing Imperial College London United Kingdom Munich Center for Machine Learning Germany Munich Data Science Institute Technical University of Munich Munich Germany
Topological correctness plays a critical role in many image segmentation tasks, yet most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy. Existing topology-aware met... 详细信息
来源: 评论
Tracking the risk of a deployed model and detecting harmful distribution shifts
arXiv
收藏 引用
arXiv 2021年
作者: Podkopaev, Aleksandr Ramdas, Aaditya Department of Statistics & Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
When deployed in the real world, machine learning models inevitably encounter changes in the data distribution, and certain—but not all—distribution shifts could result in significant performance degradation. In pra... 详细信息
来源: 评论
A Comprehensive Review of Supervised learning Algorithms in Healthcare Applications
A Comprehensive Review of Supervised Learning Algorithms in ...
收藏 引用
Artificial Intelligence in Education and Industry 4.0 (IDICAIEI), DMIHER International Conference on
作者: Aditya Barhate Abhay Tale Nayan Jikar Prateek Verma Praveen Kumar Prajyot Yesankar Department of Artificial Intelligence and Machine Learning Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Wardha Maharashtra India Department of Artificial Intelligence and Data Science Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Wardha Maharashtra India
Supervised learning has revolutionized the concept of personalization in treatment with the development of Precision Medicine. This review aims to provide a systematic analysis of the utilization of supervised learnin... 详细信息
来源: 评论
Application of machine learning Algorithms for Analyzing Sentiments Using Twitter dataset
Application of Machine Learning Algorithms for Analyzing Sen...
收藏 引用
Sustainable Computing and Smart Systems (ICSCSS), International Conference on
作者: Bhairavi Rewatkar Aditya Barhate Prateek Verma Department of Artificial Intelligence and Data Science Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Wardha Maharashtra India Department of Artificial Intelligence and Machine Learning Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Wardha Maharashtra India
Sentiment analysis is a Natural Language Processing (NLP) approach used to determine whether a piece of text is negative, positive, or neutral based on the emotions it expresses. Despite advancements, several challeng... 详细信息
来源: 评论
Modeling lens potentials with continuous neural fields in galaxy-scale strong lenses
arXiv
收藏 引用
arXiv 2022年
作者: Biggio, Luca Vernardos, Georgios Galan, Aymeric Peel, Austin Data Analytics Lab Institute of Machine Learning Department of Computer Science ETHZ Switzerland Observatoire de Sauverny Versoix1290 Switzerland
Strong gravitational lensing is a unique observational tool for studying the dark and luminous mass distribution both within and between galaxies. Given the presence of substructures, current strong lensing observatio... 详细信息
来源: 评论
ECTSum: A New Benchmark dataset For Bullet Point Summarization of Long Earnings Call Transcripts
arXiv
收藏 引用
arXiv 2022年
作者: Mukherjee, Rajdeep Bohra, Abhinav Banerjee, Akash Sharma, Soumya Hegde, Manjunath Shaikh, Afreen Shrivastava, Shivani Dasgupta, Koustuv Ganguly, Niloy Ghosh, Saptarshi Goyal, Pawan Department of Computer Science and Engineering IIT Kharagpur India Goldman Sachs Data Science and Machine Learning Group India Leibniz University of Hannover Germany
Despite tremendous progress in automatic summarization, state-of-the-art methods are predominantly trained to excel in summarizing short newswire articles, or documents with strong layout biases such as scientific art... 详细信息
来源: 评论
Instance-Dependent Noisy Label learning via Graphical Modelling
arXiv
收藏 引用
arXiv 2022年
作者: Garg, Arpit Nguyen, Cuong Felix, Rafael Do, Thanh-Toan Carneiro, Gustavo Australian Institute for Machine Learning University of Adelaide Australia Department of Data Science and AI Faculty of Information Technology Monash University Australia
Noisy labels are unavoidable yet troublesome in the ecosystem of deep learning because models can easily overfit them. There are many types of label noise, such as symmetric, asymmetric and instance-dependent noise (I... 详细信息
来源: 评论
Partial counterfactual identification and uplift modeling: theoretical results and real-world assessment
arXiv
收藏 引用
arXiv 2022年
作者: Verhelst, Théo Mercier, Denis Shrestha, Jeevan Bontempi, Gianluca Machine Learning Group Department of Computer Science Université Libre de Bruxelles Brussels Belgium Data Science Team Orange Belgium Brussels Belgium
Counterfactuals are central in causal human reasoning and the scientific discovery process. The uplift, also called conditional average treatment effect, measures the causal effect of some action, or treatment, on the...
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论