咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是431-440 订阅
排序:
learning Counterfactual Outcomes Under Rank Preservation
arXiv
收藏 引用
arXiv 2025年
作者: Wu, Peng Li, Haoxuan Zheng, Chunyuan Zeng, Yan Chen, Jiawei Liu, Yang Guo, Ruocheng Zhang, Kun School of Mathematics and Statistics Beijing Technology and Business University China Center for Data Science Peking University China School of Mathematical Sciences Peking University China College of Computer Science and Technology Zhejiang University China Computer Science and Engineering University of California Santa Cruz Bolivia ByteDance Research China Department of Philosophy Carnegie Mellon University United States Machine Learning Department Mohamed bin Zayed University of Artificial Intelligence United Arab Emirates
Counterfactual inference aims to estimate the counterfactual outcome at the individual level given knowledge of an observed treatment and the factual outcome, with broad applications in fields such as epidemiology, ec... 详细信息
来源: 评论
New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness
收藏 引用
Journal of Ambient Intelligence and Humanized Computing 2023年 第9期14卷 12789-12805页
作者: Xie, Xiaoliang Xie, Bingqi Xiong, Dan Hou, Muzhou Zuo, Jinxia Wei, Guo Chevallier, Julien School of Mathematics and Statistics Hunan University of Technology and Busin Ess Changsha410205 China School of Mathematics and Statistics Central South University Changsha410083 China Key Laboratory of Hunan Province for Statistical Learning and Intelligent Computation Hunan University of Technology and Business Hunan Changsha410205 China Institute of Big Data and Internet Innovation Hunan University of Technology and Business Changsha410205 China Department of Mathematics and Computer Science University of North Carolina at Pembroke PembrokeNC28372 United States 184 boulevard Saint-Germain Paris75006 France 2 rue de la Liberté Saint-Denis93526 France
Aiming at the difficulty in obtaining a complete Bayesian network (BN) structure directly through search-scoring algorithms, authors attempted to incorporate expert judgment and historical data to construct an interpr... 详细信息
来源: 评论
Homotopy reconstruction via the CecH complex and the vietoris-rips complex  36
Homotopy reconstruction via the CecH complex and the vietori...
收藏 引用
36th International Symposium on Computational Geometry, SoCG 2020
作者: Kim, Jisu Shin, Jaehyeok Chazal, Frédéric Rinaldo, Alessandro Wasserman, Larry Inria Saclay - Île-de-France Palaiseau France Department of Statistics and Data Science Carnegie Mellon University PittsburghPA United States Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA United States
We derive conditions under which the reconstruction of a target space is topologically correct via the Čech complex or the Vietoris-Rips complex obtained from possibly noisy point cloud data. We provide two novel theo... 详细信息
来源: 评论
Introduction to the Special Issue on Causal Inference for Recommender Systems
收藏 引用
ACM Transactions on Recommender Systems 2024年 第2期2卷 1-4页
作者: Yongfeng Zhang Xu Chen Da Xu Tobias Schnabel Department of Computer Science Rutgers University New Brunswick United States Gaoling School of Artificial Intelligence Renmin University of China Beijing China Machine Learning Walmart Labs San Bruno United States Information and Data Sciences Microsoft Research Redmond Redmond United States
A significant proportion of machine learning methodologies for recommendation systems are grounded in the fundamental principle of matching, utilizing perceptual and similarity-based learning approaches. These methods... 详细信息
来源: 评论
Bringing closure to FDR control: beating the e-Benjamini-Hochberg procedure
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Ziyu Fischer, Lasse Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Competence Center for Clinical Trials Bremen University of Bremen Germany Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States
False discovery rate (FDR) has been a key metric for error control in multiple hypothesis testing, and many methods have developed for FDR control across a diverse cross-section of settings and applications. We develo...
来源: 评论
Marine Predators Algorithm for Energy Scheduling Problem Using Renewable Energy
Marine Predators Algorithm for Energy Scheduling Problem Usi...
收藏 引用
Cyber Resilience (ICCR), International Conference on
作者: Sharif Naser Makhadmeh Ammar Kamal Abasi Mohammed Azmi Al-Betar Department of Data Science and Artificial Intelligence University of Petra Amman Jordan Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) Abu Dhabi United Arab Emirates Artificial Intelligence Research Center (AIRC) Ajman University Ajman United Arab Emirates
The Energy Scheduling Problem (ESP) involves scheduling smart home appliances based on electricity pricing schemes. This entails adjusting the timing of operations for these appliances across different periods. The pr... 详细信息
来源: 评论
Scalable Deep Gaussian Markov Random Fields for General Graphs
arXiv
收藏 引用
arXiv 2022年
作者: Oskarsson, Joel Sidén, Per Lindsten, Fredrik Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University Linköping Sweden Arriver Software AB Sweden
machine learning methods on graphs have proven useful in many applications due to their ability to handle generally structured data. The framework of Gaussian Markov Random Fields (GMRFs) provides a principled way to ... 详细信息
来源: 评论
Investor Risk Profile Determination Model
Investor Risk Profile Determination Model
收藏 引用
International Conference on Management of Large-Scale System Development (MLSD)
作者: Victor Gorelik Tatiana Zolotova Department of Simulation Systems and Operations Research Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences Moscow Russia Department of Data Analysis and Machine Learning Financial University Under the Government of the Russian Federation Moscow Russia
An assessment of the investor’s risk profile is proposed as a risk coefficient in a model with a linear convolution of expected return and variance. The value of the risk coefficient is found from solving the optimiz...
来源: 评论
COUNTARFACTUALS - GENERATING PLAUSIBLE MODEL-AGNOSTIC COUNTERFACTUAL EXPLANATIONS WITH ADVERSARIAL RANDOM FORESTS
arXiv
收藏 引用
arXiv 2024年
作者: Dandl, Susanne Blesch, Kristin Freiesleben, Timo König, Gunnar Kapar, Jan Bischl, Bernd Wright, Marvin N. Department of Statistics LMU Munich Germany Leibniz Institute for Prevention Research & Epidemiology BIPS Germany Faculty of Mathematics and Computer Science University of Bremen Germany Department of Public Health University of Copenhagen Denmark Cluster: Machine Learning for Science University of Tübingen Germany Tübingen AI Center University of Tübingen Germany
Counterfactual explanations elucidate algorithmic decisions by pointing to scenarios that would have led to an alternative, desired outcome. Giving insight into the model's behavior, they hint users towards possib... 详细信息
来源: 评论
SPEAR: Design and Implementation of an Advanced Virtual Assistant
SPEAR: Design and Implementation of an Advanced Virtual Assi...
收藏 引用
Sustainable Expert Systems (ICSES), International Conference on
作者: Garima Jain Amita Shukla Nitesh Kumar Bairwa Anamika Chaudhary Ashish Patel Ankush Jain Department of Computer Science and Buisness Systems Noida Institute of Engineering and Technology Greater Noida India Department of Artificial Intelligence Noida Institute of Engineering and Technology Greater Noida India Department of Data Science Noida Institute of Engineering and Technology Greater Noida India Department of Artificial Intelligence and Machine Learning Dronacharya Group of Institutions Greater Noida India Department of Computer Science and Enginnering Netaji Subhash University of Technology Delhi India
This research presents the development and evaluation of SPEAR, an advanced voice-activated personal desktop assistant designed to address challenges in existing virtual assistant technology, such as limited language ... 详细信息
来源: 评论