咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是521-530 订阅
排序:
Citationwalk: Network Representation learning with Scientific Documents
SSRN
收藏 引用
SSRN 2022年
作者: Lee, Juhyun Park, Sangsung Lee, Junseok Institute of Engineering Research Korea University Seoul02841 Korea Republic of Department of Big Data and Statistics Cheongju University Cheongju28503 Korea Republic of Machine Learning Big Data Institute Korea University Seoul02841 Korea Republic of
A network is a structure that can represent an organic relationship of observations. Network representation learning has the advantage of extracting latent features in a network. In recent years, various algorithms ha... 详细信息
来源: 评论
An Improved Uniform Convergence Bound with Fat-Shattering Dimension
arXiv
收藏 引用
arXiv 2023年
作者: Colomboni, Roberto Esposito, Emmanuel Paudice, Andrea Department of Computer Science Università degli Studi di Milano Via Giovanni Celoria 18 Milan20131 Italy Computational Statistics and Machine Learning Istituto Italiano di Tecnologia Via Enrico Melen 83 Genoa16152 Italy
The fat-shattering dimension characterizes the uniform convergence property of real-valued functions. The state-of-the-art upper bounds feature a multiplicative squared logarithmic factor on the sample complexity, lea...
来源: 评论
Building a data Lake for Power BI in the Cloud: A Review on Utilizing Cloud Storage Services for Large datasets
Building a Data Lake for Power BI in the Cloud: A Review on ...
收藏 引用
Artificial Intelligence in Education and Industry 4.0 (IDICAIEI), DMIHER International Conference on
作者: Viraj Vijay Gurbade Prateek Verma Swapnil Gundewar Vijendra Singh Bramhe Department of Artificial Intelligence and Data Science Faculty of Engineering and Technology Datta Meghe Institute of Higher Education & Research (DU) Wardha Maharashtra India Department of Artificial Intelligence and Machine Learning Faculty of Engineering and Technology Datta Meghe Institute of Higher Education & Research (DU) Wardha Maharashtra India School of Computing Science and Engineering VIT Bhopal University Sehore Madhya Pradesh India
A data lake is a centralized repository where you may store both structured and unstructured data at any scale. Unlike typical data warehouses, which need data structure for storage, data lakes allow you to store raw ... 详细信息
来源: 评论
An Adaptive Modelling Approach to Employee Burnout in the Context of the Big Five Personality Traits
SSRN
收藏 引用
SSRN 2022年
作者: Bashkirova, Anna Compagner, Annelies Henningsen, Diana M. Treur, Jan King's College London Institute of Psychiatry Psychology and Neuroscience United Kingdom Vrije Universiteit Amsterdam Department of Computer Science Social AI Group Netherlands University of Copenhagen Department of Computer Science Machine Learning and Data Science Denmark
Burnout has been on the rise in the past decade, especially amongst the younger working generation. While work environmental aspects play an important role in predicting burnout, variations in personality traits are i... 详细信息
来源: 评论
A unified view of label shift estimation  20
A unified view of label shift estimation
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Saurabh Garg Yifan Wu Sivaraman Balakrishnan Zachary C. Lipton Machine Learning Department Department of Statistics and Data Science Carnegie Mellon University
Under label shift, the label distribution p(y) might change but the class-conditional distributions p(x|y) do not. There are two dominant approaches for estimating the label marginal. BBSE, a moment-matching approach ...
来源: 评论
data Governance in the Big data Era: A Scalable Framework for Effective Management and Regulatory Compliance
Data Governance in the Big Data Era: A Scalable Framework fo...
收藏 引用
Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), International Conference on
作者: Vasanth S G Saravanan Keerthana S Madhu Karthick A Data Science and Applications Indian Institute of Technology Chennai Madras India Department of ECE Sri Sai Ram Institute of Technology Chennai West Tambaram India Department of Artificial Intelligence and Machine Learning St. Joseph's College of Engineering OMR Chennai India Department of CSE (Cyber Security) R.M.K. College of Engineering and Technology Thiruvallur India
While big data enhances the capacity of organizations to make choices, the traditional data governance approaches are not productive enough to manage the explosion of volume, variety, and velocity of data. This inadeq... 详细信息
来源: 评论
Towards Fixing Clever-Hans Predictors with Counterfactual Knowledge Distillation
arXiv
收藏 引用
arXiv 2023年
作者: Bender, Sidney Anders, Christopher J. Chormai, Pattarawat Marxfeld, Heike Herrmann, Jan Montavon, Grégoire Machine Learning Group Technische Universität Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Max Planck School of Cognition Leipzig Germany BASF SE Ludwigshafen am Rhein Germany Department of Mathematics and Computer Science Freie Universität Berlin Germany
This paper introduces a novel technique called counterfactual knowledge distillation (CFKD) to detect and remove reliance on confounders in deep learning models with the help of human expert feedback. Confounders are ... 详细信息
来源: 评论
Big data in Social Media: Analyzing Trends, Patterns and Challenges  2
Big Data in Social Media: Analyzing Trends, Patterns and Cha...
收藏 引用
2nd International Conference on machine learning and Autonomous Systems, ICMLAS 2025
作者: Jikar, Nayan Tale, Yash Tale, Abhay Barhate, Aditya Verma, Prateek Jikar, Aman Datta Meghe Institute of Higher Education and Research Sawangi Faculty of Engineering and Technology Department of Artificial Intelligence and Machine Learning Maharashtra Wardha442001 India Datta Meghe Institute of Higher Education and Research Sawangi Faculty of Engineering and Technology Department of Artificial Intelligence and Data Science Maharashtra Wardha442001 India Datta Meghe Institute of Higher Education and Research Faculty of Engineering and Technology Department of Computer Science and Engineering Maharashtra Wardha442001 India
The huge volumes of data produced in social media provide both new possibilities and challenges to analytics. The present paper emphasizes Big data analytics and machine learning (ML) methods to uncover trends, patter... 详细信息
来源: 评论
Giant Trevally Optimizer (GTO): Enhancing HVDC Transmission Capacity with Optimized Fault Current Limiters and HVDC Circuit Breaker Parameters
Giant Trevally Optimizer (GTO): Enhancing HVDC Transmission ...
收藏 引用
Electronics and Renewable Systems (ICEARS), International Conference on
作者: M. Siva Ramkumar Saranya. N Gokul Gopan Rahmath Ulla Baig Josha Daniel S Babu M Department of ECE SNS College of Technology India Department of Artificial Intelligence and Data Science Karpagam College of Engineering India Department of Mechanical Engineering Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University Chennai India Department of Artificial Intelligence and Machine Learning Cambridge Institute of Technology K R Puram Bangalore Department of EEE Hindustan College of Engineering and Technology India Master of Engineering in Embedded Systems Hindusthan College of Engineering and Technology India
The multi-terminal HVDC system relies heavily on circuit breakers (CBs) and fault current limiters (FCLs) for protection and performance reliability. This research describes a new Giant Trevally optimizer-based strate... 详细信息
来源: 评论
A unified view of label shift estimation
arXiv
收藏 引用
arXiv 2020年
作者: Garg, Saurabh Wu, Yifan Balakrishnan, Sivaraman Lipton, Zachary C. Machine Learning Department Department of Statistics and Data Science Carnegie Mellon University
Label shift describes the setting where although the label distribution might change between the source and target domains, the class-conditional probabilities (of data given a label) do not. There are two dominant ap... 详细信息
来源: 评论