咨询与建议

限定检索结果

文献类型

  • 673 篇 期刊文献
  • 425 篇 会议
  • 4 册 图书

馆藏范围

  • 1,102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 686 篇 工学
    • 476 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 144 篇 生物工程
    • 97 篇 生物医学工程(可授...
    • 96 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 71 篇 光学工程
    • 56 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 24 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 20 篇 仪器科学与技术
  • 535 篇 理学
    • 320 篇 数学
    • 178 篇 统计学(可授理学、...
    • 163 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 62 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 35 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 22 篇 农学
  • 17 篇 经济学
  • 6 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 63 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 25 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 945 篇 英文
  • 154 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1102 条 记 录,以下是581-590 订阅
排序:
Distribution-free binary classification: prediction sets, confidence intervals and calibration  20
Distribution-free binary classification: prediction sets, co...
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Chirag Gupta Aleksandr Podkopaev Aaditya Ramdas Machine Learning Department Carnegie Mellon University Machine Learning Department Carnegie Mellon University and Department of Statistics and Data Science Carnegie Mellon University
We study three notions of uncertainty quantification—calibration, confidence intervals and prediction sets—for binary classification in the distribution-free setting, that is without making any distributional assump...
来源: 评论
Evaluation of augmentation methods in classifying autism spectrum disorders from fMRI data with 3D convolutional neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Jönemo, Johan Abramian, David Eklund, Anders Division of Medical Informatics Department of Biomedical Engineering Division of Statistics & Machine Learning Department of Computer and Information Science Linköping University Sweden
Classifying subjects as healthy or diseased using neuroimaging data has gained a lot of attention during the last 10 years. Here we apply deep learning to derivatives from resting state fMRI data, and investigate how ... 详细信息
来源: 评论
Sensor Allocation and Online-learning-based Path Planning for Maritime Situational Awareness Enhancement: A Multi-Agent Approach
arXiv
收藏 引用
arXiv 2023年
作者: Nguyen, Bach Long Doan, Anh-Dzung Chin, Tat-Jun Guettier, Christophe Gupta, Surabhi Parra, Estelle Reid, Ian Wagner, Markus The Department of Data Science and AI Monash Univeristy ClaytonVIC3800 Australia Australian Institute for Machine Learning The University of Adelaide AdelaideSA5000 Australia Safran Electronics and Defense Massy91300 France Safran Electronics and Defense Australasia BotanyNSW2019 Australia
Countries with access to large bodies of water often aim to protect their maritime transport by employing maritime surveillance systems. However, the number of available sensors (e.g., cameras) is typically small comp... 详细信息
来源: 评论
Sentiment Analysis Using machine learning Methods
Sentiment Analysis Using Machine Learning Methods
收藏 引用
Intelligent & Innovative Practices in Engineering & Management (IIPEM), International Conference on
作者: Abhishek Badholia Tarun Dhar Diwan Preeti Narooka Pravin B Khatkale Ankit Vishnoi Keshav Kaushik Department of Data Science Shri Shankaracharya Institute of Professional Management and Technology Raipur Atal Bihari Vajpayee University Bilaspur India Artificial Intelligence and Machine Learning School of Computer and Engineering Manipal University Jaipur India Sanjivani University Kopargaon Maharashtra India Department of Computer Science and Engineering Graphic Era Deemed to be University Dehradun Uttarakhand India Amity School of Engineering and Technology Amity University Punjab Mohali India
machine learning (ML) will be utilized to evaluate sentiment analysis in this project. This study aims to do this. Sentiment analysis is a popular natural language processing area. This is a natural language processin... 详细信息
来源: 评论
Towards Friendly AI: A Comprehensive Review and New Perspectives on Human-AI Alignment
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Qiyang Li, Yupei Alturki, Emran Murthy, Sunil Munthumoduku Krishna Schuller, Björn W. GLAM Department of Computing Imperial College London United Kingdom MRI Technical University of Munich Germany Technical University of Munich Germany relAI Konrad Zuse School of Excellence in Reliable AI Munich Germany MDSI – Munich Data Science Institute Munich Germany MCML – Munich Center for Machine Learning Munich Germany
As Artificial Intelligence (AI) continues to advance rapidly, Friendly AI (FAI) has been proposed to advocate for more equitable and fair development of AI. Despite its importance, there is a lack of comprehensive rev...
来源: 评论
A Review on Soil Moisture Monitoring Methods using Satellite Images
A Review on Soil Moisture Monitoring Methods using Satellite...
收藏 引用
Artificial Intelligence in Education and Industry 4.0 (IDICAIEI), DMIHER International Conference on
作者: Prateek Verma Aahash Kamble Aditya Barhate Abhay Tale Amit Gudadhe Department of Artificial Intelligence and Machine Learning Faculty of Engineering & Technology Datta Meghe Institute of Higher Education & Research Wardha Maharashtra India Department of Artificial Intelligence and Data Science Faculty of Engineering & Technology Datta Meghe Institute of Higher Education & Research Wardha Maharashtra India Department of Basic Sciences and Humanities Faculty of Engineering & Technology Datta Meghe Institute of Higher Education & Research Sawangi (Meghe) Wardha Maharashtra India
Soil moisture is an important parameter in the hydrological cycle and an important component for agricultural production and prediction. The regular monitoring of soil moisture plays a big role in the prediction and m... 详细信息
来源: 评论
Scalable Sensitivity and Uncertainty Analyses for Causal-Effect Estimates of Continuous-Valued Interventions
arXiv
收藏 引用
arXiv 2022年
作者: Jesson, Andrew Douglas, Alyson Manshausen, Peter Solal, Maëlys Meinshausen, Nicolai Stier, Philip Gal, Yarin Shalit, Uri OATML Department of Computer Science University of Oxford United Kingdom AOPP Department of Physics University of Oxford United Kingdom Department of Computer Science University of Oxford United Kingdom Seminar for Statistics Department of Mathematics ETH Zurich Switzerland Machine Learning and Causal Inference in Healthcare Lab Technion - Israel Institute of Technology
Estimating the effects of continuous-valued interventions from observational data is a critically important task for climate science, healthcare, and economics. Recent work focuses on designing neural network architec... 详细信息
来源: 评论
Risk-based decision making: estimands for sequential prediction under interventions
arXiv
收藏 引用
arXiv 2023年
作者: Luijken, Kim Morzywolek, Pawel van Amsterdam, Wouter Cinà, Giovanni Hoogland, Jeroen Keogh, Ruth Krijthe, Jesse Magliacane, Sara van Ommen, Thijs Peek, Niels Putter, Hein van Smeden, Maarten Sperrin, Matthew Wang, Junfeng Weir, Daniala Didelez, Vanessa van Geloven, Nan Department of Epidemiology Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht Netherlands Department of Applied Mathematics Computer Science and Statistics Ghent University Ghent Belgium Department of Statistics University of Washington Seattle United States Department of Medical Informatics Amsterdam University Medical Centers Amsterdam Netherlands Institute for Logic Language and Computation University of Amsterdam Amsterdam Netherlands Pacmed Amsterdam Netherlands Department of Epidemiology and Data Science Amsterdam University Medical Centers Amsterdam Netherlands Department of Medical Statistics London School of Hygiene & Tropical Medicine Keppel Street London United Kingdom Pattern Recognition and Bio-Informatics Group EEMCS Delft University of Technology Delft Netherlands Amsterdam Machine Learning Lab University of Amsterdam Amsterdam Netherlands Department of Information and Computing Sciences Utrecht University Utrecht Netherlands Division of Informatics Imaging and Data Science Faculty of Biology Medicine and Health University of Manchester Manchester Academic Health Science Centre Manchester United Kingdom Department of Biomedical Data Sciences Leiden University Medical Center Leiden Netherlands Division of Pharmacoepidemiology and Clinical Pharmacology Department of Pharmaceutical Sciences Utrecht University Utrecht Netherlands Department of Biometry and Data Management Leibniz Institute for Prevention Research Epidemiology - BIPS Bremen Germany Faculty of Mathematics/Computer Science University of Bremen Bremen Germany
Prediction models are used amongst others to inform medical decisions on interventions. Typically, individuals with high risks of adverse outcomes are advised to undergo an intervention while those at low risk are adv... 详细信息
来源: 评论
Heat flux for semilocal machine-learning potentials
收藏 引用
Physical Review B 2023年 第10期108卷 L100302-L100302页
作者: Marcel F. Langer Florian Knoop Christian Carbogno Matthias Scheffler Matthias Rupp Machine Learning Group Technische Universität Berlin 10587 Berlin Germany Berlin Institute for the Foundations of Learning and Data 10623 Berlin Germany The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS Adlershof of the Humboldt Universität zu Berlin 14195 Berlin Germany Theoretical Physics Division Department of Physics Chemistry and Biology (IFM) Linköping University 581 83 Linköping Sweden Department of Computer and Information Science University of Konstanz 78464 Konstanz Germany Materials Research and Technology Department Luxembourg Institute of Science and Technology Belvaux Luxembourg
The Green-Kubo (GK) method is a rigorous framework for heat transport simulations in materials. However, it requires an accurate description of the potential-energy surface and carefully converged statistics. machine-... 详细信息
来源: 评论
Human-in-the-loop: Provably Efficient Preference-based Reinforcement learning with General Function Approximation
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Xiaoyu Zhong, Han Yang, Zhuoran Wang, Zhaoran Wang, Liwei Key Laboratory of Machine Perception MOE School of Artificial Intelligence Peking University China Center for Data Science Peking University China Peng Cheng Laboratory China Department of Statistics and Data Science Yale University United States Department of Industrial Engineering and Management Sciences Northwestern University United States
We study human-in-the-loop reinforcement learning (RL) with trajectory preferences, where instead of receiving a numeric reward at each step, the agent only receives preferences over trajectory pairs from a human over... 详细信息
来源: 评论