咨询与建议

限定检索结果

文献类型

  • 672 篇 期刊文献
  • 420 篇 会议
  • 4 册 图书

馆藏范围

  • 1,096 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 681 篇 工学
    • 476 篇 计算机科学与技术...
    • 413 篇 软件工程
    • 142 篇 生物工程
    • 96 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 94 篇 生物医学工程(可授...
    • 70 篇 光学工程
    • 55 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 528 篇 理学
    • 317 篇 数学
    • 178 篇 统计学(可授理学、...
    • 162 篇 生物学
    • 106 篇 物理学
    • 66 篇 系统科学
    • 60 篇 化学
  • 160 篇 管理学
    • 82 篇 图书情报与档案管...
    • 78 篇 管理科学与工程(可...
    • 48 篇 工商管理
  • 71 篇 医学
    • 57 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 31 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 22 篇 农学
  • 17 篇 经济学
  • 6 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 63 篇 machine learning
  • 51 篇 deep learning
  • 44 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 artificial intel...
  • 20 篇 decision making
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 13 篇 machine learning...

机构

  • 62 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 21 篇 center for data ...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 65 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 22 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 13 篇 montavon grégoir...
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 carneiro gustavo

语言

  • 995 篇 英文
  • 98 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1096 条 记 录,以下是51-60 订阅
排序:
Anytime-valid FDR control with the stopped e-BH procedure
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Hongjian Dandapanthula, Sanjit Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
The recent e-Benjamini-Hochberg (e-BH) procedure for multiple hypothesis testing is known to control the false discovery rate (FDR) under arbitrary dependence between the input e-values. This paper points out an impor... 详细信息
来源: 评论
Multilingual Facial Emotion Decoding and Posture Recognition using Random Forest Classifier
Multilingual Facial Emotion Decoding and Posture Recognition...
收藏 引用
2024 Asian Conference on Intelligent Technologies, ACOIT 2024
作者: Sangeetha, K. Balaji, V.S. Manju, M. Renuka Devi, S. Velayutham, P. Department of Artificial Intelligence and Machine Learning Rajalakshmi Engineering College Chennai India Department of Artificial Intelligence and Data Science Rajalakshmi Engineering College Chennai India Department of Computer Science and Engineering Aarupadai Veedu Institute of Technology Chennai India
Effective communication is crucial for success in various interactions, including personal and online interviews. The work proposed is to refine the communication effectiveness and extend the understanding of interact... 详细信息
来源: 评论
Dynamic k-Anonymity for Electronic Health Records: A Topological Framework  19th
Dynamic k-Anonymity for Electronic Health Records: A Topolo...
收藏 引用
19th International Workshop on data Privacy Management, DPM 2024, 8th International Workshop on Cryptocurrencies and Blockchain Technology, CBT 2024 and 10th Workshop on the Security of Industrial Control Systems and of Cyber-Physical Systems, CyberICPS 2024 which were held in conjunction with the 29th European Symposium on Research in Computer Security, ESORICS 2024
作者: Swaminathan, Arjhun Akgün, Mete Medical Data Privacy and Privacy Preserving Machine Learning Department of Computer Science University of Tübingen Tübingen Germany Institute for Bioinformatics and Medical Informatics Tübingen Germany
With the rapid digitization of Electronic Health Records (EHRs), fast and adaptive data anonymization methods have become increasingly important. While tools from topological data analysis (TDA) have been proposed to ... 详细信息
来源: 评论
Bringing closure to FDR control: beating the e-Benjamini-Hochberg procedure
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Ziyu Fischer, Lasse Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Competence Center for Clinical Trials Bremen University of Bremen Germany Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States
False discovery rate (FDR) has been a key metric for error control in multiple hypothesis testing, and many methods have developed for FDR control across a diverse cross-section of settings and applications. We develo...
来源: 评论
Application of data Mining Techniques in Automobile Insurance Fraud Detection  23
Application of Data Mining Techniques in Automobile Insuranc...
收藏 引用
6th International Conference on Mathematics and statistics, ICoMS 2023
作者: Na Bangchang, Kannat Wongsai, Sangdao Simmachan, Teerawat Department of Mathematics and Statistics Faculty of Science and Technology Thammasat University Pathum Thani Thailand Department of Mathematics and Statistics Thammasat University Research Unit in Data Learning Faculty of Science and Technology Thammasat University Pathum Thani Thailand
The insurance industry is a fast-growing industry and handles substantial amounts of data. Fraudulent claims are the main problem in the industry. Auto insurance fraud is one of the most prominent types of insurance f... 详细信息
来源: 评论
Graph fission and cross-validation
arXiv
收藏 引用
arXiv 2024年
作者: Leiner, James Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We introduce a technique called graph fission which takes in a graph which potentially contains only one observation per node (whose distribution lies in a known class) and produces two (or more) independent graphs wi... 详细信息
来源: 评论
Sharp Matrix Empirical Bernstein Inequalities
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Hongjian Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We present two sharp empirical Bernstein inequalities for symmetric random matrices with bounded eigenvalues. By sharp, we mean that both inequalities adapt to the unknown variance in a tight manner: the deviation cap... 详细信息
来源: 评论
Positive Semidefinite Matrix Supermartingales
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Hongjian Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We explore the asymptotic convergence and nonasymptotic maximal inequalities of supermartingales and backward submartingales in the space of positive semidefinite matrices. These are natural matrix analogs of scalar n... 详细信息
来源: 评论
Testing by Betting while Borrowing and Bargaining
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Hongjian Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
Testing by betting has been a cornerstone of the game-theoretic statistics literature. In this framework, a betting score (or more generally an e-process), as opposed to a traditional p-value, is used to quantify the ... 详细信息
来源: 评论
An efficient doubly-robust test for the kernel treatment effect  23
An efficient doubly-robust test for the kernel treatment eff...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Diego Martinez-Taboada Aaditya Ramdas Edward H. Kennedy Department of Statistics and Data Science Carnegie Mellon University Pittsburgh PA Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University Pittsburgh PA
The average treatment effect, which is the difference in expectation of the counter-factuals, is probably the most popular target effect in causal inference with binary treatments. However, treatments may have effects...
来源: 评论