咨询与建议

限定检索结果

文献类型

  • 673 篇 期刊文献
  • 425 篇 会议
  • 4 册 图书

馆藏范围

  • 1,102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 686 篇 工学
    • 476 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 144 篇 生物工程
    • 97 篇 生物医学工程(可授...
    • 96 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 71 篇 光学工程
    • 56 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 24 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 20 篇 仪器科学与技术
  • 535 篇 理学
    • 320 篇 数学
    • 178 篇 统计学(可授理学、...
    • 163 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 62 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 35 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 22 篇 农学
  • 17 篇 经济学
  • 6 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 63 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 25 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 945 篇 英文
  • 154 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1102 条 记 录,以下是651-660 订阅
排序:
Deep learning for Uneven data in Industrial IoT Using a Distributed Bias-Aware Adversarial Network
Deep Learning for Uneven Data in Industrial IoT Using a Dist...
收藏 引用
International Conference on Inventive Research in Computing Applications (ICIRCA)
作者: Raj Kumar Gupta Naveena N B. Srinivasa Rao Rajasree RS Swagata Sarkar Kallakunta Ravi Kumar Physics Department Sardar Vallabhbhai Patel College Veer Kunwar Singh University Bhabua Ara Bihar Computer Technology-UG Kongu Engineering College Perundurai Department of Computer Science and Engineering Gokaraju Rangaraju Institute of Engineering & Technology Hyderabad Artificial Intelligence and Machine Learning New Horizon College of Engineering Bangalore Department of Artificial intelligence and Data Science Sri Sairam Engineering College Sai Leo Nagar Chennai 44 Department of ECE Koneru Lakshmaiah Education Foundation Vaddeswaram AP
In minority class and noisy data situations, supervised learning performs more favorably for the majority class but cannot generalize testing data. Performance in the aforementioned use cases might be improved with th...
来源: 评论
Fetal Re-Identification in Multiple Pregnancy Ultrasound Images Using Deep learning
Fetal Re-Identification in Multiple Pregnancy Ultrasound Ima...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Elisabeth Gabler Michael Nissen Thomas R. Altstidl Adriana Titzmann Kai Packhäuser Andreas Maier Peter A. Fasching Bjoern M. Eskofier Heike Leutheuser Department Artificial Intelligence in Biomedical Engineering Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU) Erlangen Germany Department of Gynecology and Obstetrics Erlangen University Hospital Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU) Erlangen Germany Department of Computer Science Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU) Erlangen Germany
Ultrasound examinations during pregnancy can detect abnormal fetal development, which is a leading cause of perinatal mortality. In multiple pregnancies, the position of the fetuses may change between examinations. Th...
来源: 评论
GatedxLSTM: A Multimodal Affective Computing Approach for Emotion Recognition in Conversations
arXiv
收藏 引用
arXiv 2025年
作者: Li, Yupei Sun, Qiyang Murthy, Sunil Munthumoduku Krishna Alturki, Emran Schuller, Björn W. GLAM Department of Computing Imperial College London United Kingdom CHI – Chair of Health Informatics MRI Technical University of Munich Germany CHI – Chair of Health Informatics Technical University of Munich Germany relAI – The Konrad Zuse School of Excellence in Reliable AI Munich Germany MDSI – Munich Data Science Institute Munich Germany MCML – Munich Center for Machine Learning Munich Germany
Affective Computing (AC) is essential for advancing Artificial General Intelligence (AGI), with emotion recognition serving as a key component. However, human emotions are inherently dynamic, influenced not only by an... 详细信息
来源: 评论
The Sackin Index of Simplex Networks
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Louxin Department of Mathematics Centre of Data Science and Machine Learning National University of Singapore 10 Lower Kent Ridge Road Singapore119076 Singapore
A phylogenetic network is a simplex (or 1-component tree-child) network if the child of every reticulation node is a network leaf. Simplex networks are a superclass of phylogenetic trees and a subclass of tree-child n...
来源: 评论
Ai-Driven Automated Tool for Abdominal CT Body Composition Analysis in Gastrointestinal Cancer Management
Ai-Driven Automated Tool for Abdominal CT Body Composition A...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Xinyu Nan Meng He Zifan Chen Bin Dong Lei Tang Li Zhang Center for Data Science Peking University China Department of Radiology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education) Peking University Cancer Hospital and Institute Beijing China Beijing International Center for Mathematical Research (BICMR) Peking University Beijing China Center for Machine Learning Research Peking University Beijing China National Biomedical Imaging Center Peking University Beijing China
The incidence of gastrointestinal cancers remains significantly high, particularly in China, emphasizing the importance of accurate prognostic assessments and effective treatment strategies. Research shows a strong co... 详细信息
来源: 评论
On the power of conditional independence testing under model-X
arXiv
收藏 引用
arXiv 2020年
作者: Katsevich, Eugene Ramdas, Aaditya Department of Statistics and Data Science University of Pennsylvania United States Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
For testing conditional independence (CI) of a response Y and a predictor X given covariates Z, the recently introduced model-X (MX) framework has been the subject of active methodological research, especially in the ... 详细信息
来源: 评论
Individual Fairness Through Reweighting and Tuning
arXiv
收藏 引用
arXiv 2024年
作者: Mahamadou, Abdoul Jalil Djiberou Goetz, Lea Altman, Russ Stanford Center for Biomedical Ethics Stanford University StanfordCA94305 United States Artificial Intelligence and Machine Learning GSK LondonN1C 4AG United Kingdom Department of Biomedical Data Science Stanford University StanfordCA94305 United States Department of Bioengineering Stanford University StanfordCA94305 United States Department of Genetics Stanford University StanfordCA94305 United States Department of Medicine Stanford University StanfordCA94305 United States
Inherent bias within society can be amplified and perpetuated by artificial intelligence (AI) systems. To address this issue, a wide range of solutions have been proposed to identify and mitigate bias and enforce fair... 详细信息
来源: 评论
AutoMS: automatic model selection for novelty detection with error rate control  22
AutoMS: automatic model selection for novelty detection with...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Yifan Zhang Haiyan Jiang Haojie Ren Changliang Zou Dejing Dou School of Statistics and Data Sciences LPMC KLMDASR and LEBPS Nankai University Tianjin China Machine Learning Department MBZUAI Abu Dhabi UAE and Baidu Research Baidu Inc. Beijing China School of Mathematical Science Shanghai Jiao Tong University Shanghai China Baidu Research Baidu Inc. Beijing China
Given an unsupervised novelty detection task on a new dataset, how can we automatically select a "best" detection model while simultaneously controlling the error rate of the best model? For novelty detectio...
来源: 评论
Reproducing kernel Hilbert space, Mercer's theorem, eigenfunctions, Nyström method, and use of kernels in machine learning: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on kernels, kernel methods, and related fields. We start with reviewing the history of kernels in functional analysis and machine learning. Then, Mercer kernel, Hilbert and Banach s... 详细信息
来源: 评论
KKT conditions, first-order and second-order optimization, and distributed optimization: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on Karush-Kuhn-Tucker (KKT) conditions, first-order and second-order numerical optimization, and distributed optimization. After a brief review of history of optimization, we start ... 详细信息
来源: 评论