咨询与建议

限定检索结果

文献类型

  • 673 篇 期刊文献
  • 425 篇 会议
  • 4 册 图书

馆藏范围

  • 1,102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 686 篇 工学
    • 476 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 144 篇 生物工程
    • 97 篇 生物医学工程(可授...
    • 96 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 71 篇 光学工程
    • 56 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 24 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 20 篇 仪器科学与技术
  • 535 篇 理学
    • 320 篇 数学
    • 178 篇 统计学(可授理学、...
    • 163 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 62 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 35 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 22 篇 农学
  • 17 篇 经济学
  • 6 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 63 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 25 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 945 篇 英文
  • 154 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1102 条 记 录,以下是691-700 订阅
排序:
Gravitational-Wave Parameter Estimation in non-Gaussian noise using Score-Based Likelihood Characterization
arXiv
收藏 引用
arXiv 2024年
作者: Legin, Ronan Isi, Maximiliano Wong, Kaze W.K. Hezaveh, Yashar Perreault-Levasseur, Laurence Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning MontréalQC Canada Department of Physics Université de Montréal MontréalQC Canada Mila - Quebec Artificial Intelligence Institute MontréalQC Canada Center for Computational Astrophysics Flatiron Institute New YorkNY United States Department of Applied Mathematics and Statistics Johns Hopkins University BaltimoreMD United States Trottier Space Institute MontréalQC Canada Perimeter Institute for Theoretical Physics WaterlooON Canada
Gravitational-wave (GW) parameter estimation typically assumes that instrumental noise is Gaussian and stationary. Obvious departures from this idealization are typically handled on a case-by-case basis, e.g., through... 详细信息
来源: 评论
mlr3spatiotempcv: Spatiotemporal resampling methods for machine learning in R
arXiv
收藏 引用
arXiv 2021年
作者: Schratz, Patrick Becker, Marc Lang, Michel Brenning, Alexander Friedrich Schiller University Jena Department of Geography Geographic Information Science Group Germany Ludwig-Maximilians-Universität München Department of Statistics Statistical Learning and Data Science Group Germany TU Dortmund University Faculty of Statistics Germany
Spatial and spatiotemporal machine-learning models require a suitable framework for their model assessment, model selection, and hyperparameter tuning, in order to avoid error estimation bias and over-fitting. This co... 详细信息
来源: 评论
ASSESSING REUSABILITY OF DEEP learning-BASED MONOTHERAPY DRUG RESPONSE PREDICTION MODELS TRAINED WITH OMICS data
arXiv
收藏 引用
arXiv 2024年
作者: Overbeek, Jamie C. Partin, Alexander Brettin, Thomas S. Chia, Nicholas Narykov, Oleksandr Vasanthakumari, Priyanka Wilke, Andreas Zhu, Yitan Clyde, Austin Jones, Sara Gnanaolivu, Rohan Liu, Yuanhang Jiang, Jun Wang, Chen Knutson, Carter McNaughton, Andrew Kumar, Neeraj Fernando, Gayara Demini Ghosh, Souparno Sanchez-Villalobos, Cesar Zhang, Ruibo Pal, Ranadip Ryan Weil, M. Stevens, Rick L. Data Science and Learning Division Argonne National Laboratory LemontIL United States Computing Environment and Life Sciences Argonne National Laboratory LemontIL United States Department of Computer Science The University of Chicago ChicagoIL United States Frederick National Laboratory for Cancer Research FrederickMD United States Department of Quantitative Health Sciences Mayo Clinic RochesterMN United States Pacific Northwest National Laboratory RichlandWA United States Department of Statistics University of Nebraska–Lincoln LincolnNE United States Department of Electrical & Computer Engineering Texas Tech University LubbockTX United States
Cancer drug response prediction (DRP) models present a promising approach towards precision oncology, tailoring treatments to individual patient profiles. While deep learning (DL) methods have shown great potential in... 详细信息
来源: 评论
Generative locally linear embedding
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark The Machine Learning Laboratory Department of Electrical and Computer Engineering University of Waterloo WaterlooON Canada The Department of Statistics and Actuarial Science University of Waterloo WaterlooON Canada The Centre for Pattern Analysis and Machine Intelligence Department of Electrical and Computer Engineering University of Waterloo WaterlooON Canada
Locally Linear Embedding (LLE) is a nonlinear spectral dimensionality reduction and manifold learning method. It has two main steps which are linear reconstruction and linear embedding of points in the input space and... 详细信息
来源: 评论
Heat flux for semi-local machine-learning potentials
arXiv
收藏 引用
arXiv 2023年
作者: Langer, Marcel F. Knoop, Florian Carbogno, Christian Scheffler, Matthias Rupp, Matthias Machine Learning Group Technische Universität Berlin Berlin10587 Germany Bifold - Berlin Institute for the Foundations of Learning and Data Berlin Germany The Nomad Laboratory The Fhi of the Max-Planck-Gesellschaft Iris Adlershof The Humboldt Universität zu Berlin Germany Linköping University LinköpingSE-581 83 Sweden Department of Computer and Information Science University of Konstanz Konstanz78464 Germany Belvaux Luxembourg
The Green-Kubo (GK) method is a rigorous framework for heat transport simulations in materials. However, it requires an accurate description of the potential-energy surface and carefully converged statistics. machine-... 详细信息
来源: 评论
XAI for Transformers: Better Explanations through Conservative Propagation
arXiv
收藏 引用
arXiv 2022年
作者: Ali, Ameen Ali Schnake, Thomas Eberle, Oliver Montavon, Grégoire Müller, Klaus-Robert Wolf, Lior The School of Computer Science Tel-Aviv University Israel Machine Learning Group Technische Universität Berlin Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max Planck Institute for Informatics Saarbrücken Germany
Transformers have become an important workhorse of machine learning, with numerous applications. This necessitates the development of reliable methods for increasing their transparency. Multiple interpretability metho... 详细信息
来源: 评论
Kernel based quantum machine learning at record rate: Many-body distribution functionals as compact representations
arXiv
收藏 引用
arXiv 2023年
作者: Khan, Danish Heinen, Stefan von Lilienfeld, O. Anatole Department of Chemistry University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
The feature vector mapping used to represent chemical systems is a key factor governing the superior data-efficiency of kernel based quantum machine learning (QML) models applicable throughout chemical compound space.... 详细信息
来源: 评论
Predicting Response to Patients with Gastric Cancer Via a Dynamic-Aware Model with Longitudinal Liquid Biopsy data
SSRN
收藏 引用
SSRN 2024年
作者: Chen, Zifan Zhao, Jie Li, Yanyan Li, Yilin Liu, Huimin Feng, Xujiao Nan, Xinyu Dong, Bin Shen, Lin Chen, Yang Zhang, Li Center for Data Science Peking University Beijing China Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research Ministry of Education Peking University Cancer Hospital and Institute Beijing China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China Guangzhou Medical University Guangzhou China Peking University Beijing China Center for Machine Learning Research Peking University Beijing China Peking University Changsha Institute for Computing and Digital Economy Changsha China
Gastric cancer (GC) presents challenges in predicting treatment responses due to its patient-specific heterogeneity. Recently, liquid biopsies have become recognized as a valuable data modality, offering essential cel... 详细信息
来源: 评论
Cross-Store Next-Basket Recommendation
Cross-Store Next-Basket Recommendation
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Liang-Chen Ma Ya Li Zi-Feng Mai Fei-Yao Liang Chang-Dong Wang Min Chen Mohsen Guizani School of Computer Science and Engineering Sun Yat-sen University Guangzhou China School of Electronics and Information Guangdong Polytechnic Normal University Guangzhou China Guangdong Provincial Key Laboratory of Intellectual Property and Big Data Guangzhou China School of Computer Science and Engineering South China University of Technology Guangzhou China Pazhou Laboratory Guangzhou China Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) Abu Dhabi UAE
Next-basket recommendation (NBR) infers a set of items that a user will interact with in the next basket. Existing methods often struggle with the data sparsity problem, particularly when the number of baskets is sign... 详细信息
来源: 评论
Personalised Speech-Based PTSD Prediction Using Weighted-Instance learning
Personalised Speech-Based PTSD Prediction Using Weighted-Ins...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Alexander Kathan Shahin Amiriparian Andreas Triantafyllopoulos Alexander Gebhard Sabrina Milkus Jonas Hohmann Pauline Muderlak Jürgen Schottdorf Richard Musil Björn W. Schuller EIHW – Chair of Embedded Intelligence for Healthcare and Wellbeing University of Augsburg Germany CHI – Chair of Health Informatics MRI Technical Univsersity of Munich Germany MCML – Munich Center for Machine Learning Germany Department of Psychiatry and Psychotherapy University Hospital LMU Munich Germany Zentrumspraxis Friedberg Germany GLAM – Group on Language Audio & Music Imperial College London UK MDSI – Munich Data Science Institute Germany
Post-traumatic stress disorder (PTSD) is a prevalent disorder that can develop in people who have experienced very stressful, shocking, or distressing events. It has great influence on peoples’ daily life and can aff... 详细信息
来源: 评论