咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是741-750 订阅
排序:
DSGD-CECA: Decentralized SGD with Communication-Optimal Exact Consensus Algorithm
arXiv
收藏 引用
arXiv 2023年
作者: Ding, Lisang Jin, Kexin Ying, Bicheng Yuan, Kun Yin, Wotao Department of Mathematics University of California Los AngelesCA United States Department of Mathematics Princeton University PrincetonNJ United States Google Inc. Los AngelesCA United States Center for Machine Learning Research Peking University Beijing China AI for Science Institute Beijing China National Engineering Labratory for Big Data Analytics and Applications Beijing China Decision Intelligence Lab. Alibaba US BellevueWA United States
Decentralized Stochastic Gradient Descent (SGD) is an emerging neural network training approach that enables multiple agents to train a model collaboratively and simultaneously. Rather than using a central parameter s... 详细信息
来源: 评论
Myocarditis Diagnosis: A Method using Mutual learning-Based ABC and Reinforcement learning
Myocarditis Diagnosis: A Method using Mutual Learning-Based ...
收藏 引用
International Symposium on Computational Intelligence and Informatics
作者: Saba Danaei Arsam Bostani Seyed Vahid Moravvej Fardin Mohammadi Roohallah Alizadehsani Afshin Shoeibi Hamid Alinejad-Rokny Saeid Nahavandi Adiban Institute of Higher Education Semnan Iran Department of mechanical engineering of biosystems Urmia university Department of exercise physiology & health science University of tehran Internship in UNSW BioMedical Machine Learning Lab Sydney NSW Australia Institute for Intelligent Systems Research and Innovation (IISRI) Deakin University Waurn Ponds Victoria Australia UNSW Data Science Hub The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW Australia
Myocarditis occurs when the heart muscle becomes inflamed and inflammation occurs when your body’s immune system responds to infections. It can be diagnosed using cardiac magnetic resonance image (MRI), a non-invasiv... 详细信息
来源: 评论
Autonomous data extraction from peer reviewed literature for training machine learning models of oxidation potentials
arXiv
收藏 引用
arXiv 2023年
作者: Lee, Siwoo Heinen, Stefan Khan, Danish Von Lilienfeld, O. Anatole Department of Chemistry University of Toronto St. George campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Acceleration Consortium University of Toronto 80 St George St TorontoONM5S 3H6 Canada Department of Materials Science and Engineering University of Toronto St. George campus TorontoON Canada Department of Physics University of Toronto St. George campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Berlin Germany
We present an automated data-collection pipeline involving a convolutional neural network and a large language model to extract user-specified tabular data from peer-reviewed literature. The pipeline is applied to 74 ... 详细信息
来源: 评论
Two-Sample Testing on Ranked Preference data and the Role of Modeling Assumptions
arXiv
收藏 引用
arXiv 2020年
作者: Rastogi, Charvi Balakrishnan, Sivaraman Shah, Nihar B. Singh, Aarti Machine Learning Department Department of Statistics Computer Science Department Carnegie Mellon University PittsburghPA15213 United States
A number of applications require two-sample testing on ranked preference data. For instance, in crowdsourcing, there is a long-standing question of whether pairwise comparison data provided by people is distributed si... 详细信息
来源: 评论
Software for dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy
arXiv
收藏 引用
arXiv 2021年
作者: Anders, Christopher J. Neumann, David Samek, Wojciech Müller, Klaus-Robert Lapuschkin, Sebastian Machine Learning Group Department of Electrical Engineering and Computer Science Technische Universität Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Fraunhofer Heinrich Hertz Institute Berlin Germany Machine Learning and Communications Group Department of Electrical Engineering and Computer Science Technische Universität Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max Planck Institut für Informatik Saarbrücken Germany
Deep Neural Networks (DNNs) are known to be strong predictors, but their prediction strategies can rarely be understood. With recent advances in Explainable Artificial Intelligence (XAI), approaches are available to e... 详细信息
来源: 评论
Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features
arXiv
收藏 引用
arXiv 2021年
作者: Pargent, Florian Pfisterer, Florian Thomas, Janek Bischl, Bernd Department of Psychology Psychological Methods and Assessment LMU Munich Leopold-straße 13 Munich80802 Germany Department of Statistics Statistical Learning and Data Science LMU Munich Ludwigstraße 33 Munich80539 Germany
Since most machine learning (ML) algorithms are designed for numerical inputs, efficiently encoding categorical variables is a crucial aspect in data analysis. A common problem are high cardinality features, i.e. unor... 详细信息
来源: 评论
On the Utility Function of Experiments in Fundamental science
arXiv
收藏 引用
arXiv 2025年
作者: Dorigo, Tommaso Doro, Michele Aehle, Max Gauger, Nicolas R. Awais, Muhammad Izbicki, Rafael Kieseler, Jan Masserano, Luca Nardi, Federico Vergara, Luis Recabarren Luleå University of Technology Laboratorievägen 14 Luleå97187 Sweden INFN - Sezione di Padova via F. Marzolo 8 Padova35131 Italy Universal Scientific Education and Research Network Italy Università di Padova Dipartimento di Fisica e Astronomia "G.Galilei" via F. Marzolo 8 Padova35131 Italy Gottlieb-Daimler-Strase Kaiserslautern67663 Germany Karlsruhe Institute for Technology Kaiserstrase 12 Karlsruhe76131 Germany Laboratoire de Physique de Clermont Auvergne 4 Avenue Blaise Pascal Aubière63170 France Centro di Ateneo di Studi e Attività Spaziali "Giuseppe Colombo" Via Venezia 15 PadovaI-35131 Italy Department of Statistics & Data Science Department of Machine Learning Carnegie Mellon University Pittsburgh United States Department of Statistics Federal University of São Carlos São Carlos Brazil
The majority of experiments in fundamental science today are designed to be multi-purpose: their aim is not simply to measure a single physical quantity or process, but rather to enable increased precision in the meas... 详细信息
来源: 评论
Media and responsible AI governance: a game-theoretic and LLM analysis
arXiv
收藏 引用
arXiv 2025年
作者: Balabanova, Nataliya Bashir, Adeela Bova, Paolo Buscemi, Alessio Cimpeanu, Theodor da Fonseca, Henrique Correia Di Stefano, Alessandro Duong, Manh Hong Domingos, Elias Fernández Fernandes, Antonio Han, The Anh Krellner, Marcus Ogbo, Ndidi Bianca Powers, Simon T. Proverbio, Daniele Santos, Fernando P. Shamszaman, Zia Ush Song, Zhao School of Mathematics University of Birmingham United Kingdom School Computing Engineering and Digital Technologies Teesside University United Kingdom Luxembourg Institute of Science and Technology Luxembourg School of Mathematics and Statistics University of St Andrews United Kingdom INESC-ID and Instituto Superior Técnico Universidade de Lisboa Portugal Machine Learning Group Université libre de Bruxelles Belgium AI Lab Vrije Universiteit Brussel Belgium Division of Computing Science and Mathematics University of Stirling United Kingdom Department of Industrial Engineering University of Trento Italy University of Amsterdam Netherlands
This paper investigates the complex interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems. Using evolutionary game theory and large language models (LLMs), we model the ... 详细信息
来源: 评论
Automated question-answer medical model based on deep learning technology  20
Automated question-answer medical model based on deep learni...
收藏 引用
6th International Conference on Engineering and MIS, ICEMIS 2020
作者: Abdallah, Abdelrahman Kasem, Mahmoud Hamada, Mohamed A. Sdeek, Shaymaa MSc Machine Learning and Data Science Satbayev University Almaty Kazakhstan Information Technology Assiut University Assiut Egypt IS Department International IT University Almaty Kazakhstan Dept. Information System Assiut University Qena Egypt
Artificial intelligence can now provide more solutions for different problems, especially in the medical field. One of those problems is the lack of answers to any given medical/health-related question. The Internet i... 详细信息
来源: 评论
Reconstructing Galaxy Cluster Mass Maps using Score-based Generative Modeling
arXiv
收藏 引用
arXiv 2024年
作者: Hsu, Alan Ho, Matthew Lin, Joyce Markey, Carleen Ntampaka, Michelle Trac, Hy Póczos, Barnabás Department of Astronomy Harvard University CambridgeMA02138 United States Department of Physics Carnegie Mellon University PittsburghPA15213 United States UMR 7095 98 bis bd Arago ParisF-75014 France Columbia Astrophysics Laboratory Columbia University 550 West 120th Street New YorkNY10027 United States Department of Physics University of Wisconsin-Madison MadisonWI53726 United States McWilliams Center for Cosmology and Astrophysics Carnegie Mellon University PittsburghPA15213 United States Data Science Mission Office Space Telescope Science Institute BaltimoreMD21218 United States Department of Physics & Astronomy Johns Hopkins University BaltimoreMD21218 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
We present a novel approach to reconstruct gas and dark matter projected density maps of galaxy clusters using score-based generative modeling. Our diffusion model takes in mock SZ and X-ray images as conditional inpu... 详细信息
来源: 评论