咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是761-770 订阅
排序:
MIXUP-BASED DEEP METRIC learning APPROACHES FOR INCOMPLETE SUPERVISION
arXiv
收藏 引用
arXiv 2022年
作者: Buris, Luiz H. Pedronette, Daniel C.G. Papa, Joao P. Almeida, Jurandy Carneiro, Gustavo Faria, Fabio Augusto Institute of Science and Technology Universidade Federal de São Paulo Brazil Depart. of Statistics Applied Math. and Computing São Paulo State University Brazil Department of Computing São Paulo State University Brazil Department of Computing Federal University of São Carlos Brazil Australian Institute for Machine Learning The University of Adelaide Australia
Deep learning architectures have achieved promising results in different areas (e.g., medicine, agriculture, and security). However, using those powerful techniques in many real applications becomes challenging due to... 详细信息
来源: 评论
Towards self-driving laboratories: The central role of density functional theory in the AI age
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Bing von Rudorff, Guido Falk Anatole von Lilienfeld, O. University of Vienna Faculty of Physics Kolingasse 14-16 WienAT1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Heinrich-Plett-Straße 40 Kassel34132 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Department of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Density functional theory (DFT) plays a pivotal role for the chemical and materials science due to its relatively high predictive power, applicability, versatility and computational efficiency. We review recent progre... 详细信息
来源: 评论
Automatic Diagnosis of Myocarditis Disease in Cardiac MRI Modality using Deep Transformers and Explainable Artificial Intelligence
arXiv
收藏 引用
arXiv 2022年
作者: Jafari, Mahboobeh Shoeibi, Afshin Ghassemi, Navid Heras, Jonathan Ling, Sai Ho Beheshti, Amin Zhang, Yu-Dong Wang, Shui-Hua Alizadehsani, Roohallah Gorriz, Juan M. Acharya, U. Rajendra Rokny, Hamid Alinejad Internship in BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia Data Science and Computational Intelligence Institute University of Granada Spain Department of Mathematics and Computer Science University of La Rioja La Rioja Spain Australia Data Analytics Lab Department of Computing Macquarie University SydneyNSW2109 Australia School of Computing and Mathematical Sciences University of Leicester Leicester United Kingdom Deakin University VIC3217 Australia Department of Psychiatry University of Cambridge United Kingdom School of Mathematics Physics and Computing University of Southern Queensland Springfield Australia BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia UNSW Data Science Hub The University of New South Wales SydneyNSW2052 Australia Research Centre Macquarie University Sydney2109 Australia
Myocarditis is a significant cardiovascular disease (CVD) that poses a threat to the health of many individuals by causing damage to the myocardium. The occurrence of microbes and viruses, including the likes of HIV, ... 详细信息
来源: 评论
Strain-induced superfluid transition for atoms on graphene
arXiv
收藏 引用
arXiv 2022年
作者: Kim, Sang Wook Elsayed, Mohamed Nichols, Nathan S. Lakoba, Taras Vanegas, Juan Wexler, Carlos Kotov, Valeri N. Maestro, Adrian Del Department of Physics University of Vermont BurlingtonVT05405 United States Data Science and Learning Division Argonne National Laboratory ArgonneIL60439 United States Department of Mathematics & Statistics University of Vermont BurlingtonVT05405 United States Department of Physics and Astronomy University of Missouri ColumbiaMO65211 United States Department of Physics and Astronomy University of Tennessee KnoxvilleTN37996 United States Min H. Kao Department of Electrical Engineering and Computer Science University of Tennessee KnoxvilleTN37996 United States
Bosonic atoms deposited on atomically thin substrates represent a playground for exotic quantum many-body physics due to the highly-tunable, atomic-scale nature of the interaction potentials. The ability to engineer s... 详细信息
来源: 评论
Large language models illuminate a progressive pathway to artificial intelligent healthcare assistant
Medicine Plus
收藏 引用
Medicine Plus 2024年 第2期1卷 102-124页
作者: Mingze Yuan Peng Bao Jiajia Yuan Yunhao Shen Zifan Chen Yi Xie Jie Zhao Quanzheng Li Yang Chen Li Zhang Lin Shen Bin Dong Center for Data Science Peking UniversityBeijing 100871China Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and Institute Beijing 100142China National Engineering Laboratory for Big Data Analysis and Applications Peking UniversityBeijing 100871China Beijing International Center for Mathematical Research Peking UniversityBeijing 100871China Center for Machine Learning Research Peking University Beijing 100871China National Biomedical Imaging Center Peking UniversityBeijing 100871China Peking University Changsha Institute for Computing and Digital Economy Changsha 410205China Massachusetts General Hospital Boston MA 02114-2696USA Harvard Medical School BostonMA 02115USA
With the rapid development of artificial intelligence,large language models(LLMs)have shown promising capabilities in mimicking human-level language comprehen-sion and *** has sparked significant interest in applying ... 详细信息
来源: 评论
Objective frequentist uncertainty quantification for atmospheric CO2 retrievals
arXiv
收藏 引用
arXiv 2020年
作者: Patil, Pratik Kuusela, Mikael Hobbs, Jonathan Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Jet Propulsion Laboratory California Institute of Technology PasadenaCA91109 United States
The steadily increasing amount of atmospheric carbon dioxide (CO2) is affecting the global climate system and threatening the long-term sustainability of Earth's ecosystem. In order to better understand the source... 详细信息
来源: 评论
Revealing excited states of rotational Bose–Einstein condensates
arXiv
收藏 引用
arXiv 2023年
作者: Yin, Jianyuan Huang, Zhen Cai, Yongyong Du, Qiang Zhang, Lei School of Mathematical Sciences Laboratory of Mathematics and Applied Mathematics Peking University Beijing100871 China Department of Mathematics National University of Singapore Singapore119076 Singapore Department of Mathematics University of California BerkeleyCA94720 United States School of Mathematical Sciences Beijing Normal University Beijing100875 China Department of Applied Physics and Applied Mathematics Data Science Institute Columbia University New YorkNY10027 United States Beijing International Center for Mathematical Research Center for Quantitative Biology Center for Machine Learning Research Peking University Beijing100871 China
Rotational Bose–Einstein condensates can exhibit quantized vortices as topological excitations. In this study, the ground and excited states of the rotational Bose–Einstein condensates are systematically studied by ... 详细信息
来源: 评论
Provable Tensor Completion with Graph Information
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Kaidong Wang, Yao Liao, Xiuwu Tang, Shaojie Yang, Can Meng, Deyu Center for Intelligent Decision-making and Machine Learning School of Management Xian Jiaotong University Shaan’xi Xi’an China Naveen Jindal School of Management The University of Texas at Dallas RichardsonTX United States Department of Mathematics The Hong Kong University of Science and Technology Hong Kong School of Mathematics and Statistics Ministry of Education Key Lab of Intelligent Networks and Network Security Xian Jiaotong University Shaan’xi Xian China Macau Institute of Systems Engineering Macau University of Science and Technology Taipa China
Graphs, depicting the interrelations between variables, has been widely used as effective side information for accurate data recovery in various matrix/tensor recovery related applications. In this paper, we study the... 详细信息
来源: 评论
Your transformer may not be as powerful as you expect  22
Your transformer may not be as powerful as you expect
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Shengjie Luo Shanda Li Shuxin Zheng Tie-Yan Liu Liwei Wang Di He National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University and Zhejiang Lab Machine Learning Department School of Computer Science Carnegie Mellon University Microsoft Research National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University and Center for Data Science Peking University National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding...
来源: 评论
Universal consistency of deep convolutional neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Lin, Shao-Bo Wang, Kaidong Wang, Yao Zhou, Ding-Xuan Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an710049 China School of Data Science Department of Mathematics City University of Hong Kong Hong Kong Hong Kong
Compared with avid research activities of deep convolutional neural networks (DCNNs) in practice, the study of theoretical behaviors of DCNNs lags heavily behind. In particular, the universal consistency of DCNNs rema... 详细信息
来源: 评论