咨询与建议

限定检索结果

文献类型

  • 673 篇 期刊文献
  • 425 篇 会议
  • 4 册 图书

馆藏范围

  • 1,102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 686 篇 工学
    • 476 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 144 篇 生物工程
    • 97 篇 生物医学工程(可授...
    • 96 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 71 篇 光学工程
    • 56 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 24 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 20 篇 仪器科学与技术
  • 535 篇 理学
    • 320 篇 数学
    • 178 篇 统计学(可授理学、...
    • 163 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 62 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 35 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 22 篇 农学
  • 17 篇 经济学
  • 6 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 63 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 25 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 945 篇 英文
  • 154 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1102 条 记 录,以下是771-780 订阅
排序:
Automated segmentation and volume measurement of intracranial carotid artery calcification on non-contrast CT
arXiv
收藏 引用
arXiv 2021年
作者: Bortsova, Gerda Bos, Daniel Dubost, Florian Vernooij, Meike W. Ikram, M. Kamran van Tulder, Gijs de Bruijne, Marleen Biomedical Imaging Group Rotterdam Department of Radiology and Nuclear Medicine Erasmus MC Rotterdam Netherlands Department of Epidemiology Erasmus MC Rotterdam Netherlands Department of Biomedical Data Science Stanford University United States Department of Radiology and Nuclear Medicine Erasmus MC Rotterdam Netherlands Faculty of Science Radboud University Netherlands Machine Learning Section Department of Computer Science University of Copenhagen Copenhagen Denmark
Purpose To develop and evaluate a fully-automated deep-learning-based method for assessment of intracranial carotid artery calcification (ICAC). Methods This was a secondary analysis of prospectively collected data fr... 详细信息
来源: 评论
Accurate machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
arXiv
收藏 引用
arXiv 2022年
作者: Unke, Oliver T. Stöhr, Martin Ganscha, Stefan Unterthiner, Thomas Maennel, Hartmut Kashubin, Sergii Ahlin, Daniel Gastegger, Michael Sandonas, Leonardo Medrano Tkatchenko, Alexandre Müller, Klaus-Robert Google Research Brain Team Machine Learning Group Technische Universität Berlin Berlin10587 Germany Technische Universität Berlin Berlin10623 Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg BASLEARN TU Berlin Berlin10587 Germany BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes. Accurate MD simulations require computationally demanding quantum-mechanical calculations, being practically limited... 详细信息
来源: 评论
What is the best data augmentation approach for brain tumor segmentation using 3D U-Net?
arXiv
收藏 引用
arXiv 2020年
作者: Cirillo, Marco Domenico Abramian, David Eklund, Anders Division of Medical Informatics Department of Biomedical Engineering Division of Statistics & Machine Learning Department of Computer and Information Science Linköping University Sweden
Training segmentation networks requires large annotated datasets, which in medical imaging can be hard to obtain. Despite this fact, data augmentation has in our opinion not been fully explored for brain tumor segment... 详细信息
来源: 评论
Efficient dataset generation for machine learning halide perovskite alloys
收藏 引用
Physical Review Materials 2025年 第5期9卷 053802-053802页
作者: Henrietta Homm Jarno Laakso Patrick Rinke Department of Applied Physics Aalto University 00076 Aalto Finland Physics Department Technical University of Munich Garching Germany Atomistic Modelling Center Munich Data Science Institute Technical University of Munich Garching Germany Munich Center for Machine Learning (MCML) Munich Germany
Lead-based perovskite solar cells have reached high efficiencies, but toxicity and lack of stability hinder their wide-scale adoption. These issues have been partially addressed through compositional engineering of pe... 详细信息
来源: 评论
Multi-Task learning for Sparsity Pattern Heterogeneity: Statistical and Computational Perspectives
arXiv
收藏 引用
arXiv 2022年
作者: Behdin, Kayhan Loewinger, Gabriel Kishida, Kenneth T. Parmigiani, Giovanni Mazumder, Rahul MIT Operations Research Center CambridgeMA United States Machine Learning Team National Institute on Mental Health BethesdaMD United States Department of Physiology and Pharmacology Department of Neurosurgery Wake Forest School of Medicine Winston SalemNC United States Department of Biostatistics Harvard School of Public Health BostonMA United States Department of Data Science Dana Farber Cancer Institute BostonMA United States MIT Sloan Schools of Management CambridgeMA United States
We consider a problem in Multi-Task learning (MTL) where multiple linear models are jointly trained on a collection of datasets ("tasks"). A key novelty of our framework is that it allows the sparsity patter... 详细信息
来源: 评论
BUILDING machine learning LIMITED AREA MODELS: KILOMETER-SCALE WEATHER FORECASTING IN REALISTIC SETTINGS
arXiv
收藏 引用
arXiv 2025年
作者: Adamov, Simon Oskarsson, Joel Denby, Leif Landelius, Tomas Hintz, Kasper Christiansen, Simon Schicker, Irene Osuna, Carlos Lindsten, Fredrik Fuhrer, Oliver Schemm, Sebastian Federal Office for Meteorology and Climatology MeteoSwiss Institute of Atmospheric and Climate Science Department of Environmental Science ETH Zurich Switzerland Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University Sweden Danish Meteorological Institute Swedish Meteorological and Hydrological Institute Sweden GeoSphere Austria Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge United Kingdom
machine learning is revolutionizing global weather forecasting, with models that efficiently produce highly accurate forecasts. Apart from global forecasting there is also a large value in high-resolution regional wea...
来源: 评论
Understanding telecom customer churn with machine learning: From prediction to causal inference  31st
Understanding telecom customer churn with machine learning: ...
收藏 引用
31st Benelux Conference on Artificial Intelligence and the 28th Belgian Dutch Conference on machine learning, BNAIC/BENELEARN 2019
作者: Verhelst, Théo Caelen, Olivier Dewitte, Jean-Christophe Lebichot, Bertrand Bontempi, Gianluca Machine Learning Group Computer Science Department Université Libre de Bruxelles Brussels Belgium Data Science Team Orange Belgium
Telecommunication companies are evolving in a highly competitive market where attracting new customers is much more expensive than retaining existing ones. Though retention campaigns may be used to prevent customer ch... 详细信息
来源: 评论
Deep CNN: A machine learning approach for driver drowsiness detection based on eye state
收藏 引用
Revue d'Intelligence Artificielle 2019年 第6期33卷 461-466页
作者: Reddy Chirra, Venkata Rami Uyyala, Srinivasulu Reddy Kishore Kolli, Venkata Krishna Department of Computer Applications National Institute of Technology Tiruchirappalli620015 India Machine Learning and Data Analytics Lab Department of Computer Applications National Institute of Technology Tiruchirappalli620015 India Department of Computer Science and Engineering VFSTR Guntur522213 India
Driver drowsiness is one of the reasons for large number of road accidents these days. With the advancement in Computer Vision technologies, smart/intelligent cameras are developed to identify drowsiness in drivers, t... 详细信息
来源: 评论
Florid – a Nationwide Identification Service for Plants from Photos and Habitat Information
SSRN
收藏 引用
SSRN 2024年
作者: Brun, Philipp de Witte, Lucienne Popp, Manuel Richard Zurell, Damaris Karger, Dirk Nikolaus Descombes, Patrice de Lutio, Riccardo Wegner, Jan Dirk Bornand, Christophe Eggenberg, Stefan Olevski, Tasko Zimmermann, Niklaus E. Swiss Federal Research Institute WSL Birmensdorf8903 Switzerland Musée et jardins botaniques cantonaux Lausanne1007 Switzerland Institute of Biochemistry and Biology University of Potsdam Potsdam14469 Germany EcoVision Lab Photogrammetry and Remote Sensing ETH Zurich Zürich8092 Switzerland Department of Mathematical Modeling and Machine Learning University of Zurich Zürich8057 Switzerland InfoFlora Switzerland Bern3013 Switzerland Swiss Data Science Center ETH Zurich Zürich8092 Switzerland University of Basel Switzerland
Citizen science has become key to biodiversity monitoring but critically depends on accurate quality control that is scalable and tailored to the focal region. We developed FlorID, a free-to-use identification service... 详细信息
来源: 评论
A three-dimensional dual-domain deep network for high-pitch and sparse helical CT reconstruction
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Wei Xia, Xiang-Gen He, Chuanjiang Ren, Zemin Lu, Jian The School of Biomedical Engineering Shenzhen University Shenzhen China The Department of Electrical and Computer Engineering University of Delaware NewarkDE19716 United States The College of Mathematics and Statistics Chongqing University Chongqing China The College of Mathematics and Physics Chongqing University of Science and Technology Chongqing China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China
In this paper, we propose a new GPU implementation of the Katsevich algorithm for helical CT reconstruction. Our implementation divides the sinograms and reconstructs the CT images pitch by pitch. By utilizing the per... 详细信息
来源: 评论