咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是811-820 订阅
排序:
Consensus-Based Optimization Methods Converge Globally
arXiv
收藏 引用
arXiv 2021年
作者: Fornasier, Massimo Klock, Timo Riedl, Konstantin Technical University of Munich School of Computation Information and Technology Department of Mathematics Munich Germany Munich Center for Machine Learning Munich Germany Munich Data Science Institute Munich Germany Simula Research Laboratory Department of Numerical Analysis and Scientific Computing Oslo Norway University of San Diego Department of Mathematics San DiegoCA United States
In this paper, we study consensus-based optimization (CBO), which is a multi-agent metaheuristic derivative-free optimization method that can globally minimize nonconvex nonsmooth functions and is amenable to theoreti... 详细信息
来源: 评论
T-Cell Receptor Optimization with Reinforcement learning and Mutation Policies for Precision Immunotherapy
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Ziqi Min, Martin Renqiang Guo, Hongyu Cheng, Chao Clancy, Trevor Ning, Xia Computer Science and Engineering The Ohio State University ColumbusOH43210 United States Machine Learning Department NEC Labs PrincetonNJ08540 United States Digital Technologies Research Centre National Research Council Canada ON Canada Department of Medicine Baylor College of Medicine HoustonTX77030 United States NEC Oncolmmunity AS Oslo Cancer Cluster Innovation Park Ullernchausséen 64 Oslo0379 Norway Biomedical Informatics The Ohio State University ColumbusOH43210 United States Translational Data Analytics Institute The Ohio State University ColumbusOH43210 United States
T cells monitor the health status of cells by identifying foreign peptides displayed on their surface. T-cell receptors (TCRs), which are protein complexes found on the surface of T cells, are able to bind to these pe... 详细信息
来源: 评论
Towards On-Chip Bayesian Neuromorphic learning
arXiv
收藏 引用
arXiv 2020年
作者: Wycoff, Nathan Balaprakash, Prasanna Xia, Fangfang Department of Statistics Virginia Tech United States Math and Computer Science Division Argonne National Laboratory Data Science and Learning Division Argonne National Laboratory
If edge devices are to be deployed to critical applications where their decisions could have serious financial, political, or public-health consequences, they will need a way to signal when they are not sure how to re... 详细信息
来源: 评论
Semi-structured deep piecewise exponential models
arXiv
收藏 引用
arXiv 2020年
作者: Kopper, Philipp Pölsterl, Sebastian Wachinger, Christian Bischl, Bernd Bender, Andreas Rügamer, David Chair of Statistical Learning and Data Science Department of Statistics LMU Munich Germany Artificial Intelligence in Medical Imaging Department of Child and Adolescent Psychiatry LMU Munich Germany
We propose a versatile framework for survival analysis that combines advanced concepts from statistics with deep learning. The presented framework is based on piecewise exponential models and thereby supports various ... 详细信息
来源: 评论
Stochastic Neighbor Embedding with Gaussian and Student-t Distributions: Tutorial and Survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Stochastic Neighbor Embedding (SNE) is a manifold learning and dimensionality reduction method with a probabilistic approach. In SNE, every point is consider to be the neighbor of all other points with some probabilit... 详细信息
来源: 评论
machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
arXiv
收藏 引用
arXiv 2023年
作者: Cheng, Sibo Quilodrán-Casas, César Ouala, Said Farchi, Alban Liu, Che Tandeo, Pierre Fablet, Ronan Lucor, Didier Iooss, Bertrand Brajard, Julien Xiao, Dunhui Janjic, Tijana Ding, Weiping Guo, Yike Carrassi, Alberto Bocquet, Marc Arcucci, Rossella Data Science Institute Department of Computing Imperial College London LondonSW7 2AZ United Kingdom Department of Earth Science and Engineering Imperial College London LondonSW7 2AZ United Kingdom Department of Computer Science and Engineering Hong Kong University of Science and Technology 999077 Hong Kong IMT Atlantique Lab-STICC UMR CNRS 6285 France and Odyssey Inria/IMT France RIKEN Center for Computational Science Kobe Japan CEREA École des Ponts and EDF R&D île-de-France France The Laboratoire Interdisciplinaire des Sciences du Numérique CNRS Paris-Saclay University OrsayF-91403 France 78401 Chatou France Institut de Mathématiques de Toulouse Toulouse31062 France SINCLAIR AI Lab Saclay France Bergen Norway School of Mathematical Sciences Tongji University Shanghai200092 China Mathematical Institute for Machine Learning and Data Science KU Eichstätt-Ingolstadt Bavaria Germany School of Information Science and Technology Nantong University Nantong226019 China Department of Physics and Astronomy Augusto Righi University of Bologna Bologna40124 Italy
data Assimilation (DA) and Uncertainty quantification (UQ) are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal dynamics. Typical applications span from computational f... 详细信息
来源: 评论
Multidimensional scaling, Sammon mapping, and Isomap: Tutorial and survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Multidimensional Scaling (MDS) is one of the first fundamental manifold learning methods. It can be categorized into several methods, i.e., classical MDS, kernel classical MDS, metric MDS, and non-metric MDS. Sammon m... 详细信息
来源: 评论
Locally linear embedding and its variants: Tutorial and survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper for Locally Linear Embedding (LLE) and its variants. The idea of LLE is fitting the local structure of manifold in the embedding space. In this paper, we first cover LLE, kernel LLE... 详细信息
来源: 评论
On the Iteration Complexity of Hypergradient Computation
arXiv
收藏 引用
arXiv 2020年
作者: Grazzi, Riccardo Franceschi, Luca Pontil, Massimiliano Salzo, Saverio Computational Statistics and Machine Learning Istituto Italiano di Tecnologia Genoa Italy Department of Computer Science University College London London United Kingdom
We study a general class of bilevel problems, consisting in the minimization of an upper-level objective which depends on the solution to a parametric fixed-point equation. Important instances arising in machine learn... 详细信息
来源: 评论
Accurately predicting anticancer peptide using an ensemble of heterogeneously trained classifiers
收藏 引用
Informatics in Medicine Unlocked 2023年 42卷
作者: Azim, Sayed Mehedi Sabab, Noor Hossain Nuri Noshadi, Iman Alinejad-Rokny, Hamid Sharma, Alok Shatabda, Swakkhar Dehzangi, Iman Center for Computational and Integrative Biology Rutgers University Camden 08102 NJ United States Department of Computer Science and Engineering United International University Plot 2 United City Madani Avenue BaddaDhaka 1212 Bangladesh Department of Bioengineering University of California Riverside 92507 CA United States BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering The University of New South Wales (UNSW Sydney) Sydney NSW 2052 Australia UNSW Data Science Hub UNSW Sydney Sydney NSW 2052 Australia Health Data Analytics Program AI-enabled Processes Research Centre Macquarie University Sydney 2109 Australia Institute for Integrated and Intelligent Systems Griffith University Brisbane Australia Laboratory for Medical Science Mathematics RIKEN Center for Integrative Medical Sciences Yokohama 230-0045 Japan Department of Computer Science Rutgers University Camden 08102 NJ United States
The use of therapeutic peptides for the treatment of cancer has received tremendous attention in recent years. Anticancer peptides (ACPs) are considered new anticancer drugs which have several advantages over chemistr... 详细信息
来源: 评论