咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是841-850 订阅
排序:
Universal Inference
arXiv
收藏 引用
arXiv 2019年
作者: Wasserman, Larry Ramdas, Aaditya Balakrishnan, Sivaraman Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
We propose a general method for constructing confidence sets and hypothesis tests that have finite-sample guarantees without regularity conditions. We refer to such procedures as "universal." The method is v... 详细信息
来源: 评论
Importance of Wearable Health Monitoring Systems Using IoMT;Requirements, Advantages, Disadvantages and Challenges
Importance of Wearable Health Monitoring Systems Using IoMT;...
收藏 引用
International Symposium on Computational Intelligence and Informatics
作者: Fahime Khozeimeh Mohamad Roshanzamir Afshin Shoeibi Mohammad Tayarani Darbandy Roohallah Alizadehsani Hamid Alinejad-Rokny Davood Ahmadian Abbas Khosravi Saeid Nahavandi Institute for Intelligent Systems Research and Innovation (IISRI) Deakin University Victoria Australia Department of Computer Engineering Fasa University Fasa Iran Internship in Health Data Analytics Program AI-enabled Processes (AIP) Research Centre Macquarie University Sydney Australia School of Architecture Islamic Azad University Taft Taft Iran BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW Australia Faculty of Mathematics Statistics and Computer Sciences University of Tabriz Tabriz Iran
Providing better quality of service is one of the most important goals in medical/healthcare systems. The services provided should have features such as low latency, appropriate geographic distribution, and real-time ... 详细信息
来源: 评论
Predictive inference with the jackknife+
arXiv
收藏 引用
arXiv 2019年
作者: Barber, Rina Foygel Candés, Emmanuel J. Ramdas, Aaditya Tibshirani, Ryan J. Department of Statistics University of Chicago Departments of Statistics and Mathematics Stanford University Department of Statistics and Data Science Carnegie Mellon University Machine Learning Department Carnegie Mellon University
This paper introduces the jackknife+, which is a novel method for constructing predictive confidence intervals. Whereas the jackknife outputs an interval centered at the predicted response of a test point, with the wi... 详细信息
来源: 评论
Efficient sampling from the Bingham distribution
arXiv
收藏 引用
arXiv 2020年
作者: Ge, Rong Lee, Holden Lu, Jianfeng Risteski, Andrej Duke University Computer Science Department United States Johns Hopkins University Applied Mathematics and Statistics Department United States Duke University Mathematics Department United States Carnegie Mellon University Machine Learning Department United States
We give a algorithm for exact sampling from the Bingham distribution p(x) ∝ exp(x⊺Ax) on the sphere Sd-1 with expected runtime of poly(d, λmax(A) - λmin(A)). The algorithm is based on rejection sampling, where the ... 详细信息
来源: 评论
Optimising knee injury detection with spatial attention and validating localisation ability
arXiv
收藏 引用
arXiv 2021年
作者: Belton, Niamh Welaratne, Ivan Dahlan, Adil Hearne, Ronan T. Hagos, Misgina Tsighe Lawlor, Aonghus Curran, Kathleen M. Science Foundation Ireland Centre for Research Training in Machine Learning School of Medicine University College Dublin Department of Radiology Mater Misericordiae University Hospital Dublin Ireland School of Electronic Engineering University College Dublin School of Computer Science University College Dublin Insight Centre for Data Analytics University College Dublin Dublin Ireland
This work employs a pre-trained, multi-view Convolutional Neural Network (CNN) with a spatial attention block to optimise knee injury detection. An open-source Magnetic Resonance Imaging (MRI) data set with image-leve... 详细信息
来源: 评论
Species-Specific Responses of Canopy Greenness to the Extreme Droughts of 2018 and 2022 for Four Abundant Tree Species in Germany
SSRN
收藏 引用
SSRN 2024年
作者: Wang, Yixuan Rammig, Anja Blickensdörfer, Lukas Wang, Yuanyuan Zhu, Xiao Xiang Buras, Allan Professorship for Land Surface-Atmosphere Interactions Technical University of Munich Hans-Carl-v.-Carlowitz-Platz 2 Freising85354 Germany Thünen Institute of Farm Economics Bundesallee 63 Braunschweig38116 Germany Thünen Institute of Forest Ecosystems Alfred-Moeller-Straße 1 Eberswalde16225 Germany Earth Observation Lab Geography Department Humboldt-Universität zu Berlin Unter den Linden 6 Berlin10099 Germany Chair of Data Science in Earth Observation Technical University of Munich Arcisstraße 21 Munich80333 Germany Munich Center for Machine Learning Arcisstraße 21 Munich80333 Germany
The years 2018 and 2022 witnessed extreme drought periods in Germany, which significantly affected forests. These repeated droughts were a natural experiment that provided valuable insights into how different tree spe... 详细信息
来源: 评论
Model-Based Reinforcement learning with Value-Targeted Regression
arXiv
收藏 引用
arXiv 2020年
作者: Ayoub, Alex Jia, Zeyu Szepesvári, Csaba Wang, Mengdi Yang, Lin F. Department of Computing Science University of Alberta School of Mathematical Science Peking University Department of Electrical Engineering Princeton University Center for Statistics and Machine Learning Princeton University Department of Electrical and Computer Engineering University of California Los Angeles United States DeepMind
This paper studies model-based reinforcement learning (RL) for regret minimization. We focus on finite-horizon episodic RL where the transition model P belongs to a known family of models P, a special case of which is... 详细信息
来源: 评论
Modeling the dielectric constant of silicon-based nanocomposites using machine learning
Modeling the dielectric constant of silicon-based nanocompos...
收藏 引用
2020 International Conference on Actual Problems of Electron Devices Engineering, APEDE 2020
作者: Korchagin, Sergey Alekseevich Klinaev, Yuri Vasilievich Terin, Denis Vladimirovich Romanchuk, Sergey Petrovich Financial University Government of the Russian Federation Department of Data Analysis and Machine Learning Moscow Russia Yuri Gagarin Saratov State Technical University Department of Natural and Mathematical Sciences Engels Russia Technol. and Qual. Mgmt. Saratov National Research State University Named after N. G. Chernyshevsky Department of Materials Science Saratov Russia Yuri Gagarin Saratov State Technical University Department of Information Security of Automated Systems Saratov Russia
In this work, we solve the problem of predicting the dielectric constant of silicon-based nanocomposites using machine learning methods. Mathematical models and programs have been developed to predict the electrophysi... 详细信息
来源: 评论
Path length bounds for gradient descent and flow
arXiv
收藏 引用
arXiv 2019年
作者: Gupta, Chirag Balakrishnan, Sivaraman Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States
We derive bounds on the path length ζof gradient descent (GD) and gradient flow (GF) curves for various classes of smooth convex and nonconvex functions. Among other results, we prove that: (a) if the iterates are li... 详细信息
来源: 评论
Trend filtering - II. Denoising astronomical signals with varying degrees of smoothness
arXiv
收藏 引用
arXiv 2020年
作者: Politsch, Collin A. Cisewski-Kehe, Jessi Croft, Rupert A.C. Wasserman, Larry Department of Statistics & Data Science Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States McWilliams Center for Cosmology Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Yale University New HavenCT06520 United States Department of Physics Carnegie Mellon University PittsburghPA15213 United States School of Physics University of Melbourne VIC3010 Australia
Trend filtering-first introduced into the astronomical literature in Paper I of this series-is a state-of-the-art statistical tool for denoising one-dimensional signals that possess varying degrees of smoothness. In t... 详细信息
来源: 评论