咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是861-870 订阅
排序:
Confidence intervals uncovered: Are we ready for real-world medical imaging AI?
arXiv
收藏 引用
arXiv 2024年
作者: Christodoulou, Evangelia Reinke, Annika Houhou, Rola Kalinowski, Piotr Erkan, Selen Sudre, Carole H. Burgos, Ninon Boutaj, Sofiène Loizillon, Sophie Solal, Maëlys Rieke, Nicola Cheplygina, Veronika Antonelli, Michela Mayer, Leon D. Tizabi, Minu D. Jorge Cardoso, M. Simpson, Amber Jäger, Paul F. Kopp-Schneider, Annette Varoquaux, Gaël Colliot, Olivier Maier-Hein, Lena Heidelberg Div. Intelligent Medical Systems Germany AI Health Innovation Cluster Germany NCT Heidelberg a partnership between DKFZ Heidelberg University Hospital Germany DKFZ Heidelberg Helmholtz Imaging Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Germany DKFZ Heidelberg Interactive Machine Learning Group Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London United Kingdom Sorbonne Université Institut du Cerveau - Paris Brain Institute - ICM CNRS Inria Inserm AP-HP Hôpital de la Pitié-Salpêtrière France NVIDIA Germany Department of Computer Science IT University of Copenhagen Denmark Centre for Medical Image Computing University College London United Kingdom School of Computing Queen’s University Canada Department of Biomedical and Molecular Sciences Queen’s University Canada Division of Biostatistics DKFZ Germany Parietal project team INRIA Saclay-Île de France France Faculty of Mathematics and Computer Science Heidelberg University Germany Medical Faculty Heidelberg University Germany
Medical imaging is spearheading the AI transformation of healthcare. Performance reporting is key to determine which methods should be translated into clinical practice. Frequently, broad conclusions are simply derive... 详细信息
来源: 评论
VAE-GAN Based Zero-shot Outlier Detection  2020
VAE-GAN Based Zero-shot Outlier Detection
收藏 引用
Proceedings of the 2020 4th International Symposium on Computer science and Intelligent Control
作者: Bekkouch Imad Ibrahim Dragoş Constantin Nicolae Adil Khan Syed Imran Ali Asad Khattak Machine Learning and Knowledge Representation Lab Institute of Data Science & AI Innopolis Tatarstan Russia Institutul de cercetări pentru Inteligenta Artificiala 'Mihai Draganescu' România Department of Computer Engineering Kyung Hee University Yongin-si South Korea College of Technological Innovations Zayed University Abu Dhabi United Arab Emirates
Outlier detection is one of the main fields in machine learning and it has been growing rapidly due to its wide range of applications. In the last few years, deep learning-based methods have outperformed machine learn... 详细信息
来源: 评论
Front Cover: Generation of Molecular Counterfactuals for Explainable machine learning Based on Core-Substituent Recombination (ChemMedChem 3/2024)
收藏 引用
ChemMedChem 2024年 第3期19卷
作者: Alec Lamens Prof. Jürgen Bajorath Department of Life Science Informatics and Data Science B-IT LIMES Program Unit Chemical Biology and Medicinal Chemistry Rheinische Friedrich-Wilhelms-Universität Friedrich-Hirzebruch-Allee 5/6 53115 Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Rheinische Friedrich-Wilhelms-Universität Bonn Friedrich-Hirzebruch-Allee 5/6 53115 Bonn Germany
来源: 评论
State of the art of machine learning: An overview of the past, current, and the future research trends in the era of quantum computing
收藏 引用
AIP Conference Proceedings 2022年 第1期2641卷
作者: Mohammad Isa Irawan Mohammad Jamhuri 1)Laboratory of Machine Learning and Big Data Departement Mathematics Faculty of Sciences and Analytical Data Institut Teknologi Sepuluh Nopember Surabaya Indonesia. 2)Department of Mathematics Faculty of Science and Technology UIN Maulana Malik Ibrahim Malang Indonesia
This paper describes data science history and behavioral trends on the largest platform for learning and competition in analyzing and modeling data; Kaggle. We analyze the history of methods commonly used in linear pr...
来源: 评论
Distributed Kernel Ridge Regression with Communications
arXiv
收藏 引用
arXiv 2020年
作者: Lin, Shao-Bo Wang, Di Zhou, Ding-Xuan Center of Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University Xi’an China School of Data Science Department of Mathematics City University of Hong Kong Kowloon Hong Kong
This paper focuses on generalization performance analysis for distributed algorithms in the framework of learning theory. Taking distributed kernel ridge regression (DKRR) for example, we succeed in deriving its optim... 详细信息
来源: 评论
TUdataset: A collection of benchmark datasets for learning with graphs
arXiv
收藏 引用
arXiv 2020年
作者: Morris, Christopher Kriege, Nils M. Bause, Franka Kersting, Kristian Mutzel, Petra Neumann, Marion CERC in Data Science for Real-Time Decision-Making Poly-technique MontrÃl’al Faculty of Computer Science University of Vienna Department of Computer Science TU Dortmund University Machine Learning Group TU Darmstadt Department of Computer Science University of Bonn Department of Computer Science and Engineering Washington University in St. Louis
Recently, there has been an increasing interest in (supervised) learning with graph data, especially using graph neural networks. However, the development of meaningful benchmark datasets and standardized evaluation p... 详细信息
来源: 评论
Advances in machine and deep learning for modeling and real-time detection of multi-messenger sources
arXiv
收藏 引用
arXiv 2021年
作者: Huerta, Eliu A. Zhao, Zhizhen Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Department of Computer Science University of Chicago ChicagoIL60637 United States Department of Physics University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Electrical and Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Mathematics University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Statistics National Center for Supercomputing Applications Center for Artificial Intelligence Innovation University of Illinois at Urbana-Champaign UrbanaIL61801 United States
We live in momentous times. The science community is empowered with an arsenal of cosmic messengers to study the Universe in unprecedented detail. Gravitational waves, electromagnetic waves, neutrinos and cosmic rays ... 详细信息
来源: 评论
Vox2Vox: 3D-GAN for Brain Tumour Segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Cirillo, Marco Domenico Abramian, David Eklund, Anders Department of Biomedical Engineering Linköping University Linköping Sweden Center for Medical Image Science and Visualization Linköping University Linköping Sweden Division of Statistics and Machine learning Department of Computer and Information Science Linköping University Linköping Sweden
We propose a 3D volume-to-volume Generative Adversarial Network (GAN) for segmentation of brain tumours. The proposed model, called Vox2Vox, generates segmentations from multi-channel 3D MR images. The best results ar... 详细信息
来源: 评论
Online Parameter-Free learning of Multiple Low Variance Tasks
arXiv
收藏 引用
arXiv 2020年
作者: Denevi, Giulia Stamos, Dimitris Pontil, Massimiliano Computational Statistics and Machine Learning Istituto Italiano di Tecnologia Genova16163 Italy Computer Science Department University College of London LondonWC1E 6BT United Kingdom
We propose a method to learn a common bias vector for a growing sequence of low-variance tasks. Unlike state-of-the-art approaches, our method does not require tuning any hyper-parameter. Our approach is presented in ... 详细信息
来源: 评论
Ambiguity measures for preference-based decision viewpoints  7th
Ambiguity measures for preference-based decision viewpoints
收藏 引用
7th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2019
作者: Franco, Camilo Rodríguez, J. Tinguaro Montero, Javier Gómez, Daniel Yager, Ronald R. Department of Industrial Engineering Andes University Bogotá111711 Colombia Department of Statistics and Operational Research Complutense University Madrid28040 Spain Statistics and Data Science Complutense University Madrid28040 Spain Machine Intelligence Institute Iona College New RochelleNY10801 United States
This paper examines the ambiguity of subjective judgments, which are represented by a system of pairwise preferences over a given set of alternatives. Such preferences are valued with respect to a set of reasons, in f... 详细信息
来源: 评论