咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是891-900 订阅
排序:
Multi-Consensus Decentralized Accelerated Gradient Descent
arXiv
收藏 引用
arXiv 2020年
作者: Ye, Haishan Luo, Luo Zhou, Ziang Zhang, Tong Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi’an China School of Data Science Fudan University Shanghai China Department of Computing The Hong Kong Polytechnic University Hong Kong Computer Science & Mathematics The Hong Kong University of Science and Technology Hong Kong
This paper considers the decentralized convex optimization problem, which has a wide range of applications in large-scale machine learning, sensor networks, and control theory. We propose novel algorithms that achieve... 详细信息
来源: 评论
Deep reinforcement learning for motion planning of mobile robots
arXiv
收藏 引用
arXiv 2019年
作者: Butyrev, Leonid Edelhäußer, Thorsten Mutschler, Christopher Fraunhofer Institute for Integrated Circuits Iis Precise Positioning and Analytics Department Machine Learning and Information Fusion Group Nuremberg Germany Computer Science Department Machine Learning and Data Analytics Lab Erlangen Germany
This paper presents a novel motion and trajectory planning algorithm for nonholonomic mobile robots that uses recent advances in deep reinforcement learning. Starting from a random initial state, i.e., position, veloc... 详细信息
来源: 评论
Think-aloud interviews: A tool for exploring student statistical reasoning
arXiv
收藏 引用
arXiv 2019年
作者: Reinhart, Alex Evans, Ciaran Luby, Amanda Orellana, Josue Meyer, Mikaela Wieczorek, Jerzy Elliott, Peter Burckhardt, Philipp Nugent, Rebecca Department of Statistics & Data Science Carnegie Mellon University United States Department of Mathematics and Statistics Wake Forest University United States Department of Mathematics & Statistics Swarthmore College United States Center for the Neural Basis of Cognition Machine Learning Department Carnegie Mellon University United States Department of Statistics Colby College United States
Think-aloud interviews have been a valuable but underused tool in statistics education research. Think-alouds, in which students narrate their reasoning in real time while solving problems, differ in important ways fr... 详细信息
来源: 评论
An improved approach for estimating social POI boundaries with textual attributes on social media
arXiv
收藏 引用
arXiv 2020年
作者: Tran, Cong Vu, Dung D. Shin, Won-Yong Department of Computer Science and Engineering Dankook University Yongin16890 Korea Republic of Machine Learning R&D Korbit AI MontrealQCH2T 2A3 Canada Machine Intelligence & Data Science Laboratory Yonsei University Seoul03722 Korea Republic of Yonsei University Seoul03722 Korea Republic of
It has been insufficiently explored how to perform density-based clustering by exploiting textual attributes on social media. In this paper, we aim at discovering a social point-of-interest (POI) boundary, formed as a... 详细信息
来源: 评论
Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: LaBella, Dominic Schumacher, Katherine Mix, Michael Leu, Kevin McBurney-Lin, Shan Nedelec, Pierre Villanueva-Meyer, Javier Shapey, Jonathan Vercauteren, Tom Chia, Kazumi Ivory, Marina Barfoot, Theodore Al-Salihi, Omar Leu, Justin Halasz, Lia Velichko, Yury Wang, Chunhao Kirkpatrick, John Floyd, Scott Reitman, Zachary J. Mullikin, Trey Bagci, Ulas Sachdev, Sean Hattangadi-Gluth, Jona A. Seibert, Tyler M. Farid, Nikdokht Puett, Connor Pease, Matthew W. Shiue, Kevin Anwar, Syed Muhammad Faghani, Shahriar Taylor, Peter Haider, Muhammad Ammar Warman, Pranav Albrecht, Jake Jakab, András Moassefi, Mana Chung, Verena Aristizabal, Alejandro Karargyris, Alexandros Kassem, Hasan Pati, Sarthak Sheller, Micah Coley, Aaron Huang, Christina Ghanta, Siddharth Schneider, Alex Sharp, Conrad Saluja, Rachit Kofler, Florian Lohmann, Philipp Vollmuth, Phillipp Gagnon, Louis Adewole, Maruf Li, Hongwei Bran Kazerooni, Anahita Fathi Tahon, Nourel Hoda Anazodo, Udunna Moawad, Ahmed W. Menze, Bjoern Linguraru, Marius George Aboian, Mariam Wiestler, Benedikt Baid, Ujjwal Conte, Gian-Marco Rauschecker, Andreas M. Nada, Ayman Abayazeed, Aly H. Huang, Raymond de Verdier, Maria Correia Rudie, Jeffrey D. Bakas, Spyridon Calabrese, Evan Department of Radiation Oncology Duke University Medical Center DurhamNC United States Department of Radiation Oncology SUNY Upstate Medical University SyracuseNY United States San FranciscoCA United States Department of Neurosurgery King’s College Hospital London United Kingdom School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom Guy’s and St Thomas’ NHS Foundation Trust United Kingdom Department of Radiation Oncology University of Washington SeattleWA United States Department of Radiology Northwestern University EvanstonIL United States Department of Radiation Oncology Northwestern University EvanstonIL United States Department of Radiation Medicine and Applied Sciences University of California San Diego La Jolla CA United States Department of Radiology University of California San Diego La Jolla CA United States Department of Bioengineering University of California San Diego La Jolla CA United States Department of Neurological Surgery Indiana University School of Medicine IndianapolisIN United States Department of Radiation Oncology Indiana University IndianapolisIN United States Children’s National Hospital WashingtonDC United States George Washington University WashingtonDC United States Mayo Clinic RochesterMN United States CMH Lahore Medical College Lahore Pakistan Duke University Medical Center School of Medicine DurhamNC United States Sage Bionetworks United States University of Zürich Zürich Switzerland Artificial Intelligence Lab Department of Radiology Mayo Clinic RochesterMN United States MLCommons United States Factored AI United States Center For Federated Learning in Medicine Indiana University IndianapolisIN United States Division of Computational Pathology Department of Pathology and Laboratory Medicine Indiana University School of Medicine IndianapolisIN United States Medical Working Group MLCommons San FranciscoCA United States Intel United States Duke Universi
The 2024 Brain Tumor Segmentation Meningioma Radiotherapy (BraTS-MEN-RT) challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of 750 radiotherapy planning bra... 详细信息
来源: 评论
Ranking-based convolutional neural network models for peptide-MHC binding prediction
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Ziqi Min, Martin Renqiang Ning, Xia Computer Science and Engineering Department Ohio State University ColumbusOH United States Machine Learning Department NEC Labs America PrincetonNJ United States Biomedical Informatics Department Ohio State University ColumbusOH United States Translational Data Analytics Institute Ohio State University ColumbusOH United States
T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC cla... 详细信息
来源: 评论
Anomaly detection in dynamic graphs via transformer
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Yixin Pan, Shirui Wang, Yu Guang Xiong, Fei Wang, Liang Chen, Qingfeng Lee, Vincent C.S. the Department of Data Science and AI Faculty of IT Monash University ClaytonVIC3800 Australia Shanghai Jiao Tong University Institute of Natural Sciences School of Mathematical Sciences the Max Planck Institute for Mathematics in Sciences Mathematics Machine Learning group Key Laboratory of Communication and Information Systems Beijing Municipal Commission of Education Beijing Jiaotong University Beijing100044 China School of Computer Science Northwestern Polytechnical University Xi’an10072 China School of Computer Electronic and Information Guangxi University Nanning530004 China
Detecting anomalies for dynamic graphs has drawn increasing attention due to their wide applications in social networks, e-commerce, and cybersecurity. Recent deep learning-based approaches have shown promising result... 详细信息
来源: 评论
Nonparametric deconvolution models
arXiv
收藏 引用
arXiv 2020年
作者: Chaney, Allison J.B. Verma, Archit Lee, Young-suk Engelhardt, Barbara E. Fuqua School of Business Duke University 100 Fuqua Drive DurhamNC27708 United States Department of Chemical and Biological Engineering Princeton University PrincetonNJ08540 United States Department of Computer Science Princeton University PrincetonNJ08540 United States Department of Computer Science Center for Statistics and Machine Learning Princeton University PrincetonNJ08540 United States
We describe nonparametric deconvolution models (NDMs), a family of Bayesian nonparametric models for collections of data in which each observation is the average over the features from heterogeneous particles. For exa... 详细信息
来源: 评论
Incremental intervention effects in studies with dropout and many timepoints
arXiv
收藏 引用
arXiv 2019年
作者: Kim, Kwangho Kennedy, Edward H. Naimi, Ashley I. Department of Statistics & Data Science Machine Learning Department Carnegie Mellon University 5000 Forbes Ave PittsburghPA15213 United States Department of Statistics & Data Science Carnegie Mellon University 5000 Forbes Ave PittsburghPA15213 United States Department of Epidemiology Rollins School of Public Health Emory University AtlantaGA United States
Modern longitudinal studies collect feature data at many timepoints, often of the same order of sample size. Such studies are typically affected by dropout and positivity violations. We tackle these problems by genera...
来源: 评论
BIGDML: Towards exact machine learning force fields for materials
arXiv
收藏 引用
arXiv 2021年
作者: Sauceda, Huziel E. Gálvez-González, Luis E. Chmiela, Stefan Paz-Borbón, Lauro Oliver Müller, Klaus-Robert Tkatchenko, Alexandre Machine Learning Group Technische Universität Berlin Berlin10587 Germany BASLEARN TU Berlin BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany División de Ciencias Exactas y Naturales Universidad de Sonora Blvd. Luis Encinas & Rosales Hermosillo Mexico BIFOLD – Berlin Institute for the Foundations of Learning and Data Germany Instituto de Física Universidad Nacional Autónoma de México Apartado Postal 20-364 CDMX01000 Mexico Google Research Brain team Berlin Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany Department of Physics and Materials Science University of Luxembourg LuxembourgL-1511 Luxembourg
machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict the... 详细信息
来源: 评论