咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是901-910 订阅
排序:
Harnessing multimodal approaches for depression detection using large language models and facial expressions
Npj mental health research
收藏 引用
Npj mental health research 2024年 第1期3卷 66页
作者: Misha Sadeghi Robert Richer Bernhard Egger Lena Schindler-Gmelch Lydia Helene Rupp Farnaz Rahimi Matthias Berking Bjoern M Eskofier Machine Learning and Data Analytics Lab (MaD Lab) Department Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. misha.sadeghi@fau.de. Machine Learning and Data Analytics Lab (MaD Lab) Department Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. Chair of Visual Computing (LGDV) Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91058 Germany. Chair of Clinical Psychology and Psychotherapy (KliPs) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. Translational Digital Health Group Institute of AI for Health Helmholtz Zentrum München - German Research Center for Environmental Health Neuherberg 85764 Germany.
Detecting depression is a critical component of mental health diagnosis, and accurate assessment is essential for effective treatment. This study introduces a novel, fully automated approach to predicting depression s...
来源: 评论
Anatomically informed Bayesian spatial priors for fmri analysis
arXiv
收藏 引用
arXiv 2019年
作者: Abramian, David Sidén, Per Knutsson, Hans Villani, Mattias Eklund, Anders Division of Medical Informatics Department of Biomedical Engineering Division of Statistics & Machine Learning Department of Computer and Information Science Linköping University Linköping Sweden Department of Statistics Stockholm University Stockholm Sweden
Existing Bayesian spatial priors for functional magnetic resonance imaging (fMRI) data correspond to stationary isotropic smoothing filters that may oversmooth at anatomical boundaries. We propose two anatomically inf... 详细信息
来源: 评论
Beware of "Explanations" of AI
arXiv
收藏 引用
arXiv 2025年
作者: Martens, David Shmueli, Galit Evgeniou, Theodoros Bauer, Kevin Janiesch, Christian Feuerriegel, Stefan Gabel, Sebastian Goethals, Sofie Greene, Travis Klein, Nadja Kraus, Mathias Kühl, Niklas Perlich, Claudia Verbeke, Wouter Zharova, Alona Zschech, Patrick Provost, Foster University of Antwerp Department of Engineering Management Antwerp2000 Belgium National Tsing Hua University Institute of Service Science Hsinchu30013 Taiwan INSEAD Technology and Business Fontainebleau77300 France Goethe University Frankfurt Department of Information Systems Frankfurt60629 Germany TU Dortmund University Department of Computer Science Dortmund44227 Germany LMU Munich Munich Center for Machine Learning Munich80539 Germany Erasmus University Rotterdam School of Management Rotterdam3062 Netherlands Copenhagen Business School Department of Digitalization Copenhagen2000 Denmark Karlsruhe Institute of Technology Scientific Computing Center Karlsruhe76131 Germany University of Regensburg Faculty of Informatics and Data Science Regensburg93053 Germany University of Bayreuth Faculty of Law Business and Economics Bayreuth95440 Germany New York University Department of Technology Operations and Statistics New YorkNY10012 United States KU Leuven Faculty of Economics and Business Leuven3000 Belgium Humboldt-Universität zu Berlin School of Business and Economics Berlin10099 Germany Leipzig University Faculty of Economics and Management Science Leipzig04109 Germany
Understanding the decisions made and actions taken by increasingly complex AI system remains a key challenge. This has led to an expanding field of research in explainable artificial intelligence (XAI), highlighting t...
来源: 评论
Universal patterns of intra-urban morphology: Defining a global typology of the urban fabric using unsupervised clustering
收藏 引用
International Journal of Applied Earth Observation and Geoinformation 2025年 141卷
作者: Henri Debray Matthias Gassilloud Richard Lemoine-Rodríguez Michael Wurm Xiaoxiang Zhu Hannes Taubenböck Institute of Geography and Geology Department of Global Urbanization and Remote Sensing University of Würzburg 97074 Würzburg Germany German Remote Sensing Data Center (DFD) German Aerospace Center (DLR) 82234 Oberpfaffenhofen Germany Data Science in Earth Observation Technical University of Munich (TUM) 80333 Munich Germany Chair of Remote Sensing and Landscape Information Systems University of Freiburg 79106 Freiburg Germany Geolingual Studies Team University of Würzburg Am Hubland 97074 Würzburg Germany Munich Center for Machine Learning 80333 Munich Germany
The physical dimension of cities and its spatial patterns play a crucial role in shaping society and urban dynamics. Understanding the complexity of urban systems requires a detailed assessment of their physical struc...
来源: 评论
L1 Trend Filtering: A Modern Statistical Tool for Time-Domain Astronomy and Astronomical Spectroscopy
arXiv
收藏 引用
arXiv 2019年
作者: Politsch, Collin A. Cisewski-Kehe, Jessi Croft, Rupert A.C. Wasserman, Larry Department of Statistics & Data Science Carnegie Mellon University PittsburghPA15213 Machine Learning Department Carnegie Mellon University PittsburghPA15213 Department of Statistics and Data Science Yale University New HavenCT06520 Department of Physics Carnegie Mellon University PittsburghPA15213 McWilliams Center for Cosmology Carnegie Mellon University PittsburghPA15213
The problem of estimating a one-dimensional signal possessing mixed degrees of smoothness is ubiquitous in time-domain astronomy and astronomical spectroscopy. For example, in the time domain, an astronomical object m... 详细信息
来源: 评论
Field-level simulation-based inference of galaxy clustering with convolutional neural networks
收藏 引用
Physical Review D 2024年 第8期109卷 083536-083536页
作者: Pablo Lemos Liam Parker ChangHoon Hahn Shirley Ho Michael Eickenberg Jiamin Hou Elena Massara Chirag Modi Azadeh Moradinezhad Dizgah Bruno Régaldo-Saint Blancard David Spergel Department of Physics Université de Montréal Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal QC H2V 0B3 Canada Mila—Quebec Artificial Intelligence Institute Montréal 6666 Rue Saint-Urbain Montréal QC H2S 3H1 Canada Ciela—Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New York New York 10010 USA Department of Physics Princeton University Princeton New Jersey 08544 USA Center for Cosmology and Particle Physics Department of Physics New York University New York New York 10003 USA Department of Physics Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA Center for Computational Mathematics Flatiron Institute 162 5th Avenue New York New York 10010 USA Department of Astronomy University of Florida 211 Bryant Space Science Center Gainesville Florida 32611 USA Max-Planck-Institut für Extraterrestrische Physik Postfach 1312 Giessenbachstrasse 1 85748 Garching bei München Germany Waterloo Centre for Astrophysics University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada Department of Physics and Astronomy University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada Département de Physique Théorique Université de Genève 24 quai Ernest Ansermet 1211 Genève 4 Switzerland
We present the first simulation-based inference (SBI) of cosmological parameters from field-level analysis of galaxy clustering. Standard galaxy clustering analyses rely on analyzing summary statistics, such as the po... 详细信息
来源: 评论
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
arXiv
收藏 引用
arXiv 2023年
作者: Lekadir, Karim Feragen, Aasa Fofanah, Abdul Joseph Frangi, Alejandro F. Buyx, Alena Emelie, Anais Lara, Andrea Porras, Antonio R. Chan, An-Wen Navarro, Arcadi Glocker, Ben Botwe, Benard O. Khanal, Bishesh Beger, Brigit Wu, Carol C. Cintas, Celia Langlotz, Curtis P. Rueckert, Daniel Mzurikwao, Deogratias Fotiadis, Dimitrios I. Zhussupov, Doszhan Ferrante, Enzo Meijering, Erik Weicken, Eva González, Fabio A. Asselbergs, Folkert W. Prior, Fred Krestin, Gabriel P. Collins, Gary S. Tegenaw, Geletaw S. Kaissis, Georgios Misuraca, Gianluca Tsakou, Gianna Dwivedi, Girish Kondylakis, Haridimos Jayakody, Harsha Woodruf, Henry C. Mayer, Horst Joachim Aerts, Hugo JWL Walsh, Ian Chouvarda, Ioanna Buvat, Irène Tributsch, Isabell Rekik, Islem Duncan, James Kalpathy-Cramer, Jayashree Zahir, Jihad Park, Jinah Mongan, John Gichoya, Judy W. Schnabel, Julia A. Kushibar, Kaisar Riklund, Katrine Mori, Kensaku Marias, Kostas Amugongo, Lameck M. Fromont, Lauren A. Maier-Hein, Lena Alberich, Leonor Cerdá Rittner, Leticia Phiri, Lighton Marrakchi-Kacem, Linda Donoso-Bach, Lluís Martí-Bonmatí, Luis Cardoso, M. Jorge Bobowicz, Maciej Shabani, Mahsa Tsiknakis, Manolis Zuluaga, Maria A. Bielikova, Maria Fritzsche, Marie-Christine Camacho, Marina Linguraru, Marius George Wenzel, Markus De Bruijne, Marleen Tolsgaard, Martin G. Ghassemi, Marzyeh Ashrafuzzaman, Md Goisauf, Melanie Yaqub, Mohammad Abadía, Mónica Cano Mahmoud, Mukhtar M.E. Elattar, Mustafa Rieke, Nicola Papanikolaou, Nikolaos Lazrak, Noussair Díaz, Oliver Salvado, Olivier Pujol, Oriol Sall, Ousmane Guevara, Pamela Gordebeke, Peter Lambin, Philippe Brown, Pieta Abolmaesumi, Purang Dou, Qi Lu, Qinghua Osuala, Richard Nakasi, Rose Zhou, S. Kevin Napel, Sandy Colantonio, Sara Albarqouni, Shadi Joshi, Smriti Carter, Stacy Klein, Stefan Petersen, Steffen E. Aussó, Susanna Awate, Suyash Raviv, Tammy Riklin Cook, Tessa Mutsvangwa, Tinashe E.M. Rogers, Wendy A. Niessen, Wiro J. Puig-Bosch, Xènia Zeng, Yi Mohammed, Yunusa G. Aquino, Yves Saint James Salahuddin, Zohaib Starmans, Martijn P.A. Department de Matemàtiques i Informàtica Universitat de Barcelona Barcelona Spain Barcelona Spain DTU Compute Technical University of Denmark Kgs Lyngby Denmark Department of Mathematics and Computer Science Faculty of Science and Technology Milton Margai Technical University Freetown Sierra Leone Center for Computational Imaging & Simulation Technologies in Biomedicine Schools of Computing and Medicine University of Leeds Leeds United Kingdom Cardiovascular Science and Electronic Engineering Departments KU Leuven Leuven Belgium Institute of History and Ethics in Medicine Technical University of Munich Munich Germany Faculty of Engineering of Systems Informatics and Sciences of Computing Galileo University Guatemala City Guatemala Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus AuroraCO United States Department of Medicine Women’s College Research Institute University of Toronto Toronto Canada Universitat Pompeu Fabra BarcelonaBeta Brain Research Center Barcelona Spain Department of Computing Imperial College London London United Kingdom School of Biomedical & Allied Health Sciences University of Ghana Accra Ghana Department of Midwifery & Radiography School of Health & Psychological Sciences City University of London United Kingdom Kathmandu Nepal European Heart Network Brussels Belgium Department of Thoracic Imaging University of Texas MD Anderson Cancer Center Houston United States IBM Research Africa Nairobi Kenya Departments of Radiology Medicine and Biomedical Data Science Stanford University School of Medicine Stanford United States Institute for AI and Informatics in Medicine Klinikum rechts der Isar Technical University Munich Munich Germany Department of Computing Imperial College London London United Kingdom Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania United Republic of Ioannina Greece Almaty AI Lab Almaty Kazakhstan
Background: Despite major advances in artificial intelligence (AI) research for healthcare, the deployment and adoption of AI technologies remain limited in clinical practice. In recent years, concerns have been raise... 详细信息
来源: 评论
Explaining bayesian neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Bykov, Kirill Höhne, Marina M.-C. Creosteanu, Adelaida Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Marchstr. 23 Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Technische Universität Berlin Berlin Germany Google Research Brain team Berlin Germany Department of Computer Science TU Kaiserslautern Germany Heidelberg Germany Institute of Pathology Charite – Universitätsmedizin Berlin Berlin Germany Aignostics Berlin Germany RIKEN AIP 1-4-1 Nihonbashi Chuo-ku Tokyo Japan
—To make advanced learning machines such as Deep Neural Networks (DNNs) more transparent in decision making, explainable AI (XAI) aims to provide interpretations of DNNs’ predictions. These interpretations are usual... 详细信息
来源: 评论
Synchronized sensor insoles for clinical gait analysis in home-monitoring applications
收藏 引用
Current Directions in Biomedical Engineering 2018年 第1期4卷 433-437页
作者: Roth, Nils Martindale, Christine F. Gaßner, Heiko Kohl, Zacharias Klucken, Jochen Eskofer, Bjoern M. Machine Learning and Data Analytics Lab. Department of Computer Science Friedrich-Alexander-University Erlangen-Nürnberg (FAU) Erlangen Germany Department of Molecular Neurology University Hospital Erlangen Germany
Wearable sensor systems are of increasing interest in clinical gait analysis. However, little information about gait dynamics of patients under free living conditions is available, due to the challenges of integrating... 详细信息
来源: 评论
Generalization properties of optimal transport GANs with latent distribution learning
arXiv
收藏 引用
arXiv 2020年
作者: Luise, Giulia Pontil, Massimiliano Ciliberto, Carlo Computer Science Department University College London LondonWC1E 6BT United Kingdom Computational Statistics and Machine Learning - Istituto Italiano di Tecnologia Genova16100 Italy Electrical and Electronics Engineering Department Imperial College London SW7 2BT United Kingdom
The Generative Adversarial Networks (GAN) framework is a well-established paradigm for probability matching and realistic sample generation. While recent attention has been devoted to studying the theoretical properti... 详细信息
来源: 评论