咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是921-930 订阅
排序:
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
FEEDING THE ZOMBIES: SYNTHESIZING BRAIN VOLUMES USING A 3D PROGRESSIVE GROWING GAN
arXiv
收藏 引用
arXiv 2019年
作者: Eklund, Anders Division of Medical Informatics Department of Biomedical Engineering Division of Statistics and Machine learning Department of Computer and Information Science Center for Medical Image Science and Visualization Linköping University Linköping Sweden
Deep learning requires large datasets for training (convolutional) networks with millions of parameters. In neuroimaging, there are few open datasets with more than 100 subjects, which makes it difficult to, for examp... 详细信息
来源: 评论
GENERATING FMRI VOLUMES FROM T1-WEIGHTED VOLUMES USING 3D CYCLEGAN
arXiv
收藏 引用
arXiv 2019年
作者: Abramian, David Eklund, Anders Division of Medical Informatics Department of Biomedical Engineering Division of Statistics and Machine learning Department of Computer and Information Science Center for Medical Image Science and Visualization Linköping University Linköping Sweden
Registration between an fMRI volume and a T1-weighted volume is challenging, since fMRI volumes contain geometric distortions. Here we present preliminary results showing that 3D CycleGAN can be used to synthesize fMR...
来源: 评论
Correction: Understanding overfitting in random forest for probability estimation: a visualization and simulation study
收藏 引用
Diagnostic and prognostic research 2025年 第1期9卷 9页
作者: Lasai Barreñada Paula Dhiman Dirk Timmerman Anne-Laure Boulesteix Ben Van Calster Department of Development and Regeneration Louvain KU Belgium. Leuven Unit for Health Technology Assessment Research (LUHTAR) Louvain KU Belgium. Centre for Statistics in Medicine Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK. Department of Obstetrics and Gynecology University Hospitals Leuven Louvain Belgium. Institute for Medical Information Processing Biometry and Epidemiology Faculty of Medicine LMU Munich Munich Germany. Munich Center for Machine Learning Munich Germany. Department of Development and Regeneration Louvain KU Belgium. ben.vancalster@kuleuven.be. Leuven Unit for Health Technology Assessment Research (LUHTAR) Louvain KU Belgium. ben.vancalster@kuleuven.be. Department of Biomedical Data Sciences Leiden University Medical Centre Leiden the Netherlands. ben.vancalster@kuleuven.be.
来源: 评论
Variational Policy Gradient Method for Reinforcement learning with General Utilities
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Junyu Koppel, Alec Bedi, Amrit Singh Szepesvari, Csaba Wang, Mengdi Department of Industrial and Systems Engineering University of Minnesota MinneapolisMN55455 United States Computational and Information Sciences Directorate US Army Research Laboratory AdelphiMD20783 United States Department of Computer Science DeepMind University of Alberta PrincetonNJ08544 United States Department of Electrical Engineering Center for Statistics and Machine Learning Princeton University Deepmind PrincetonNJ08544 United States
In recent years, reinforcement learning (RL) systems with general goals beyond a cumulative sum of rewards have gained traction, such as in constrained problems, exploration, and acting upon prior experiences. In this... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
Erratum to ‘Model-Based Cost-Utility Analysis of Combined Low-Dose Computed Tomography Screening for Lung Cancer, Chronic Obstructive Pulmonary Disease, and Cardiovascular Disease’ [JTO Clinical and Research Reports Volume 6 Issue 5 (2025) 100813]
收藏 引用
JTO Clinical and Research Reports 2025年 第7期6卷
作者: Carina M. Behr Maarten J. IJzerman Michelle M.A. Kip Harry J.M. Groen Marjolein A. Heuvelmans Maarten van den Berge Pim van der Harst Marleen Vonder Rozemarijn Vliegenthart Hendrik Koffijberg Health Technology and Services Research TechMed Centre University of Twente Enschede The Netherlands Erasmus School of Health Policy & Management Erasmus University Rotterdam Rotterdam The Netherlands Department of Pulmonary Diseases and Tuberculosis UMCG - University Medical Center Groningen Groningen The Netherlands Department of Epidemiology University Medical Center of Groningen University of Groningen Groningen The Netherlands Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands Groningen Research Institute for Asthma and COPD University of Groningen University Medical Center Groningen Groningen The Netherlands Department of Cardiology University Medical Center Utrecht Utrecht The Netherlands Department of Radiology Medical Imaging Center University Medical Center Groningen University of Groningen Groningen The Netherlands Machine Learning Lab Data Science Center in Health (DASH) University Medical Center Groningen University of Groningen Groningen The Netherlands
来源: 评论
Constructing Impactful machine learning Research for Astronomy: Best Practices for Researchers and Reviewers
arXiv
收藏 引用
arXiv 2023年
作者: Huppenkothen, Daniela Ntampaka, Michelle Ho, Matthew Fouesneau, Morgan Nord, Brian Peek, J.E.G. Walmsley, Mike Wu, John F. Avestruz, C. Buck, Tobias Brescia, Massimo Finkbeiner, Douglas P. Goulding, Andy D. Kacprzak, T. Melchior, Peter Pasquato, Mario Ramachandra, Nesar Ting, Yuan-Sen van de Ven, Glenn Villar, Soledad Villar, V.A. Zinger, Elad SRON Netherlands Institute for Space Research Niels Bohrweg 4 Leiden2333CA Netherlands Anton Pannekoek Institute for Astronomy University of Amsterdam Science Park 904 Amsterdam1098 XH Netherlands Space Telescope Science Institute BaltimoreMD21218 United States Department of Physics & Astronomy Johns Hopkins University BaltimoreMD21218 United States UMR 7095 98 bis bd Arago ParisF-75014 France Königstuhl 17 HeidelbergD-69117 Germany Fermi National Accelerator Laboratory P. O. Box 500 BataviaIL60510 United States Kavli Institute for Cosmological Physics University of Chicago ChicagoIL60637 United States Department of Astronomy and Astrophysics University of Chicago ChicagoIL60637 United States Jodrell Bank Centre for Astrophysics Department of Physics & Astronomy University of Manchester ManchesterM13 9PL United Kingdom Dunlap Institute for Astronomy & Astrophysics University of Toronto 50 St. George Street TorontoONM5S 3H4 Canada Leinweber Center for Theoretical Physics University of Michigan Ann ArborMI48109 United States Department of Physics University of Michigan Ann ArborMI48109 United States Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Im Neuenheimer Feld 205 Heidelberg69120 Germany Universität Heidelberg Zentrum für Astronomie Institut für Theoretische Astrophysik Albert-Ueberle-Straße 2 Heidelberg69120 Germany Department of Physics "E. Pancini " University Federico II of Napoli Via Cinthia 21 NapoliI-80126 Italy INAF Astronomical Observatory of Capodimonte Salita Moiariello 16 NapoliI-80131 Italy Department of Physics Harvard University 17 Oxford St. CambridgeMA02138 United States Harvard-Smithsonian Center for Astrophysics 60 Garden St. CambridgeMA02138 United States Department of Astrophysical Sciences Princeton University PrincetonNJ08544 United States Swiss Data Science Center Paul Scherrer Institute Villigen5303 Switzerland Center for Statistics & Machine Learn
machine learning has rapidly become a tool of choice for the astronomical community. It is being applied across a wide range of wavelengths and problems, from the classification of transients to neural network emulato... 详细信息
来源: 评论
A Review of Generalized Zero-Shot learning Methods
arXiv
收藏 引用
arXiv 2020年
作者: Pourpanah, Farhad Abdar, Moloud Luo, Yuxuan Zhou, Xinlei Wang, Ran Lim, Chee Peng Wang, Xi-Zhao Jonathan Wu, Q.M. The Centre for Computer Vision and Deep Learning Department of Electrical and Computer Engineering University of Windsor WindsorONN9B 3P4 Canada Deakin University Australia The Department of Computer Science City University of Hong Kong Hong Kong The College of Mathematics and Statistics Shenzhen Key Lab. of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China The College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen518060 China
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples under the condition that some output classes are unknown during supervised learning. To address this challenging task, GZSL leve... 详细信息
来源: 评论
Evaluating one-shot tournament predictions
arXiv
收藏 引用
arXiv 2019年
作者: Ekstrøm, Claus Thorn Ley, Christophe Van Eetvelde, Hans Brefeld, Ulf Section of Biostatistics Department of Public Health University of Copenhagen Denmark Department of Applied Mathematics Computer Science and Statistics Universiteit Gent Belgium Machine Learning Group Leuphana University of Lüneburg Germany
We introduce the Tournament Rank Probability Score (TRPS) as a measure to evaluate and compare pre-tournament predictions, where predictions of the full tournament results are required to be available before the tourn... 详细信息
来源: 评论