咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是961-970 订阅
排序:
The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)
arXiv
收藏 引用
arXiv 2023年
作者: Kazerooni, Anahita Fathi Khalili, Nastaran Liu, Xinyang Haldar, Debanjan Jiang, Zhifan Anwar, Syed Muhammed Albrecht, Jake Adewole, Maruf Anazodo, Udunna Anderson, Hannah Bagheri, Sina Baid, Ujjwal Bergquist, Timothy Borja, Austin J. Calabrese, Evan Chung, Verena Conte, Gian-Marco Dako, Farouk Eddy, James Ezhov, Ivan Familiar, Ariana Farahani, Keyvan Haldar, Shuvanjan Iglesias, Juan Eugenio Janas, Anastasia Johansen, Elaine Jones, Blaise V. Kofler, Florian LaBella, Dominic Lai, Hollie Anne Van Leemput, Koen Li, Hongwei Bran Maleki, Nazanin McAllister, Aaron S. Meier, Zeke Menze, Bjoern Moawad, Ahmed W. Nandolia, Khanak K. Pavaine, Julija Piraud, Marie Poussaint, Tina Prabhu, Sanjay P. Reitman, Zachary Rodriguez, Andres Rudie, Jeffrey D. Sanchez-Montano, Mariana Shaikh, Ibraheem Salman Shah, Lubdha M. Sheth, Nakul Shinohara, Russel Taki Tu, Wenxin Viswanathan, Karthik Wang, Chunhao Ware, Jeffrey B. Wiestler, Benedikt Wiggins, Walter Zapaishchykova, Anna Aboian, Mariam Bornhorst, Miriam de Blank, Peter Deutsch, Michelle Fouladi, Maryam Hoffman, Lindsey Kann, Benjamin Lazow, Margot Mikael, Leonie Nabavizadeh, Ali Packer, Roger Resnick, Adam Rood, Brian Vossough, Arastoo Bakas, Spyridon Linguraru, Marius George Children’s Hospital of Philadelphia PhiladelphiaPA United States Department of Neurosurgery University of Pennsylvania PhiladelphiaPA United States University of Pennsylvania PhiladelphiaPA United States Sheikh Zayed Institute for Pediatric Surgical Innovation Children’s National Hospital WashingtonDC United States Department of Neurosurgery Thomas Jefferson University Hospital PA United States Sage Bionetworks United States Lab Crestview Radiology Lagos Nigeria McGill University MontrealQC Canada Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Neurosurgery The University of Southern California CA United States Department of Radiology Duke University Medical Center United States Mayo Clinic MN United States Center for Global Health Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Informatics Technical University Munich Germany TranslaTUM - Central Institute for Translational Cancer Research Technical University of Munich Germany Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD United States Biomedical Engineering Rutgers University New BrunswickNJ United States Athinoula A Martinos Center for Biomedical Imaging Massachusetts General Hospital BostonMA United States Yale University New HavenCT United States PrecisionFDA U.S. Food and Drug Administration Silver SpringMD United States Cincinnati Children’s Hospital Medical Center United States Helmholtz AI Helmholtz Munich Germany Department of Radiation Oncology Duke University Medical Center United States Department of Radiology Children’s Health Orange County CA United States Department of Applied Mathematics and Computer Science Technical University of Denmark Denmark Department of Radiol
Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the d... 详细信息
来源: 评论
Modern applications of machine learning in quantum sciences
arXiv
收藏 引用
arXiv 2022年
作者: Dawid, Anna Arnold, Julian Requena, Borja Gresch, Alexander Plodzien, Marcin Donatella, Kaelan Nicoli, Kim A. Stornati, Paolo Koch, Rouven Büttner, Miriam Okula, Robert Muñoz–Gil, Gorka Vargas–Hernández, Rodrigo A. Cervera-Lierta, Alba Carrasquilla, Juan Dunjko, Vedran Gabrié, Marylou Huembeli, Patrick van Nieuwenburg, Evert Vicentini, Filippo Wang, Lei Wetzel, Sebastian J. Carleo, Giuseppe Greplová, Eliška Krems, Roman Marquardt, Florian Tomza, Michal Lewenstein, Maciej Dauphin, Alexandre Faculty of Physics University of Warsaw Poland ICFO - Institut de Ciències Fotòniques The Barcelona Institute of Science and Technology Castelldefels Barcelona08860 Spain Center for Computational Quantum Physics Flatiron Institute New York United States Department of Physics University of Basel Switzerland Institute for Theoretical Physics Heinrich Heine University Düsseldorf Germany Institute for Quantum Inspired and Quantum Optimization Hamburg University of Technology Germany Université de Paris CNRS Laboratoire Matériaux et Phénomènes Quantiques France Machine Learning Group Technische Universität Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Department of Applied Physics Aalto University Espoo Finland Institute of Physics Albert-Ludwig University of Freiburg Germany International Centre for Theory of Quantum Technologies University of Gdańsk Poland Department of Algorithms and System Modeling Faculty of Electronics Faculty of Electronics Telecommunications and Informatics Gdańsk University of Technology Poland Institute for Theoretical Physics University of Innsbruck Austria Department of Chemistry University of Toronto Canada Vector Institute for Artificial Intelligence MaRS Centre Toronto Canada Department of Chemistry and Chemical Biology McMaster University Hamilton Canada Barcelona Supercomputing Center Spain LIACS Leiden University Netherlands CMAP École Polytechnique France Switzerland Menten AI Inc. Palo AltoCA United States Niels Bohr Institute Copenhagen Denmark CPHT CNRS École Polytechnique Institut Polytechnique de Paris PalaiseauF-91128 France Beijing National Lab for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing China Songshan Lake Materials Laboratory Dongguan China Perimeter Institute for Theoretical Physics Waterloo Canada Kavli Institute of Nanoscience Delft University of Technology DelftNL-2600 GA Netherlands Department of
In this book, we provide a comprehensive introduction to the most recentadvances in the application of machine learning methods in quantum sciences. Wecover the use of deep learning and kernel methods in supervised, u... 详细信息
来源: 评论
NTIRE 2022 Challenge on Stereo Image Super-Resolution: Methods and Results
arXiv
收藏 引用
arXiv 2022年
作者: Guo, Yulan Wang, Longguang Wang, Yingqian Li, Juncheng Gu, Shuhang Timofte, Radu Chen, Liangyu Chu, Xiaojie Yu, Wenqing Jin, Kai Wei, Zeqiang Guo, Sha Yang, Angulia Zhou, Xiuzhuang Guo, Guodong Xiao, Huaxin Yan, Shen Liu, Yuxiang Cai, Hanxiao Dai, Bin Peng, Feiyue Cao, Pu Nie, Yang Yang, Lu Song, Qing Hu, Xiaotao Xu, Jun Xu, Mai Jing, Junpeng Deng, Xin Xing, Qunliang Qiao, Minglang Guan, Zhenyu Guo, Wenlong Peng, Chenxu Chen, Zan Chen, Junyang Li, Hao Chen, Junbin Li, Weijie Yang, Zhijing Li, Gen Li, Aijin Sun, Lei Zhang, Dafeng Liu, Shizhuo Zhang, Jiangtao Qu, Yanyun Yang, Hao-Hsiang Huang, Zhi-Kai Chen, Wei-Ting Chang, Hua-En Kuo, Sy-Yen Liang, Qiaohui Lin, Jianxin Wang, Yijun Yin, Lianying Zhang, Rongju Zhao, Wei Xiao, Peng Xu, Rongjian Zhang, Zhilu Zuo, Wangmeng Guo, Hansheng Gao, Guangwei Zeng, Tieyong Kim, Joohyeok Kim, HyeonA Park, Eunpil Sim, Jae-Young Pi, Huicheng Zhang, Shunli Zhai, Jucai Zeng, Pengcheng Liu, Yang Ma, Chihao Huang, Yulin Chen, Junying National University of Defense Technology China The Chinese University of Hong Kong Hong Kong The University of Sydney Australia University of Würzburg ETH Zürich Switzerland MEGVII Technology China Peking University China Bigo Technology Pte. Ltd Singapore Smart Healthcare Innovation Lab Beijing University of Posts and Telecommunications China School of Artificial Intelligence Beijing University of Posts and Telecommunications China Head of Institute of Deep Learning Baidu Research College of Systems Engineering National University of Defense Technology China College of Liberal Arts and Sciences National University of Defense Technology China Pattern Recognition and Intelligent Vision Lab Beijing University of Posts and Telecommunications China College of Computer Science Nankai University Tianjin China School of Statistics and Data Science Nankai University Tianjin Singapore Beihang University China Zhejiang University of Technology China Guangdong University of Technology China Tencent OVBU SRC-B Xiamen University China Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Electronics Engineering National Taiwan University Taiwan College of Computer Science and Electronic Engineering Hunan University China Harbin Institude of Technology China The Chinese University of Hong Kong Hong Kong Nanjing University of Posts and Telecommunications China Department of Electrical Engineering Ulsan National Institute of Science and Technology Korea Republic of Graduate School of Artificial Intelligence Ulsan National Institute of Science and Technology Korea Republic of Beijing Jiaotong University China City University of Hong Kong Hong Kong South China University of Technology China
In this paper, we summarize the 1st NTIRE challenge on stereo image super-resolution (restoration of rich details in a pair of low-resolution stereo images) with a focus on new solutions and results. This challenge ha... 详细信息
来源: 评论
Generative Artificial Intelligence in Healthcare: Ethical Considerations and Assessment Checklist
arXiv
收藏 引用
arXiv 2023年
作者: Ning, Yilin Teixayavong, Salinelat Shang, Yuqing Savulescu, Julian Nagaraj, Vaishaanth Miao, Di Mertens, Mayli Wei Ting, Daniel Shu Ling Ong, Jasmine Chiat Liu, Mingxuan Cao, Jiuwen Dunn, Michael Vaughan, Roger Hock Ong, Marcus Eng Sung, Joseph Jao-Yiu Topol, Eric J. Liu, Nan Centre for Quantitative Medicine Duke-NUS Medical School Singapore Singapore Centre for Biomedical Ethics National University of Singapore Singapore Singapore Wellcome Centre for Ethics and Humanities University of Oxford Oxford United Kingdom School of Medicine Imperial College London London United Kingdom Centre for Ethics Department of Philosophy University of Antwerp Antwerp Belgium Antwerp Center on Responsible AI University of Antwerp Antwerp Belgium Singapore Eye Research Institute Singapore National Eye Centre Singapore Singapore SingHealth AI Office Singapore Health Services Singapore Singapore Division of Pharmacy Singapore General Hospital Singapore Singapore Machine Learning and I-Health International Cooperation Base of Zhejiang Province Hangzhou Dianzi University Zhejiang China Artificial Intelligence Institute Hangzhou Dianzi University Zhejiang China Programme in Health Services and Systems Research Duke-NUS Medical School Singapore Singapore Department of Emergency Medicine Singapore General Hospital Singapore Singapore Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore State Key Laboratory of Digestive Disease The Chinese University of Hong Kong Hong Kong Scripps Research Translational Institute Scripps Research La Jolla CA United States Institute of Data Science National University of Singapore Singapore Singapore Centre for Quantitative Medicine Duke-NUS Medical School 8 College Road Singapore169857 Singapore
The widespread use of ChatGPT and other emerging technology powered by generative artificial intelligence (GenAI) has drawn much attention to potential ethical issues, especially in high-stakes applications such as he... 详细信息
来源: 评论
Nonparametric Bayesian multi-armed bandits for single cell experiment design
arXiv
收藏 引用
arXiv 2019年
作者: Camerlenghi, Federico Dumitrascu, Bianca Ferrari, Federico Engelhardt, Barbara E. Favaro, Stefano Collegio Carlo Alberto Torino and BIDSA Bocconi University Milano Italy IMATI-CNR "Enrico Magenes" Milan Italy SAMSI Department of Statistical Science Duke University DurhamNC United States Department of Economics Management and Statistics University of Milano - Bicocca Milano20126 Italy Department of Statistical Science Duke University 415 Chapel Dr DurhamNC27705 United States Department of Computer Science Center for Statistics and Machine Learning Princeton University 35 Olden Street PrincetonNJ08540 United States Department of Economics and Statistics University of Torino Torino10134 Italy
The problem of maximizing cell type discovery under budget constraints is a fundamental challenge in the collection and the analysis of single-cell RNA-sequencing (scRNA-seq) data. In this paper, we introduce a simple... 详细信息
来源: 评论
Hybrid physical-deep learning model for astronomical inverse problems
arXiv
收藏 引用
arXiv 2019年
作者: Lanusse, François Melchior, Peter Moolekamp, Fred Berkeley Center for Cosmological Physics Berkeley Institute for Data Science University of California Berkeley BerkeleyCA94709 United States Department of Astrophysical Sciences Center for Statistics and Machine Learning Princeton University PrincetonNJ08544 United States LSST Project Management Office TucsonAZ United States Department of Astrophysical Sciences Princeton University PrincetonNJ08544 United States
We present a Bayesian machine learning architecture that combines a physically motivated parametrization and an analytic error model for the likelihood with a deep generative model providing a powerful data-driven pri... 详细信息
来源: 评论
Uniform concentration and symmetrization for weak interactions
arXiv
收藏 引用
arXiv 2019年
作者: Maurer, Andreas Pontil, Massimiliano Adalbertstr. 55 Munich80799 Germany Computational Statistics and Machine Learning Istituto Italiano di Tecnologia Genova16100 Italy Department of Computer Science University College London LondonWC1E 6BT United Kingdom
The method to derive uniform bounds with Gaussian and Rademacher complexities is extended to the case where the sample average is replaced by a nonlinear statistic. Tight bounds are obtained for U-statistics, smoothen...
来源: 评论
Pathogenesis, symptomatology, and transmission of SARS-CoV-2 through analysis of viral genomics and structure
arXiv
收藏 引用
arXiv 2021年
作者: Rando, Halie M. MacLean, Adam L. Lee, Alexandra J. Lordan, Ronan Ray, Sandipan Bansal, Vikas Skelly, Ashwin N. Sell, Elizabeth Dziak, John J. Shinholster, Lamonica D'Agostino McGowan, Lucy Guebila, Marouen Ben Wellhausen, Nils Knyazev, Sergey Boca, Simina M. Capone, Stephen Qi, Yanjun Park, Yoson Sun, Yuchen Mai, David Boerckel, Joel D. Brueffer, Christian Byrd, James Brian Kamil, Jeremy P. Wang, Jinhui Velazquez, Ryan Szeto, Gregory L. Barton, John P. Goel, Rishi Raj Mangul, Serghei Lubiana, Tiago Gitter, Anthony Greene, Casey S. Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania PhiladelphiaPA United States Department of Biochemistry and Molecular Genetics University of Colorado School of Medicine AuroraCO United States University of Colorado School of Medicine AuroraCO United States Department of Quantitative and Computational Biology University of Southern California Los AngelesCA United States Institute for Translational Medicine and Therapeutics Perelman School of Medicine University of Pennsylvania PhiladelphiaPA19104-5158 United States Department of Biotechnology Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502285 India Biomedical Data Science and Machine Learning Group German Center for Neurodegenerative Diseases Tubingen72076 Germany Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Immunology University of Pennsylvania Perelman School of Medicine Philadelphia United States Edna Bennett Pierce Prevention Research Center The Pennsylvania State University University ParkPA United States LSH2126 Mercer University MaconGA United States Department of Mathematics and Statistics Wake Forest University Winston-SalemNC United States Department of Biostatistics Harvard School of Public Health BostonMA United States Georgia State University AtlantaGA United States Innovation Center for Biomedical Informatics Georgetown University Medical Center WashingtonDC United States St. George's University School of Medicine Saint George's Grenada Department of Computer Science University of Virginia CharlottesvilleVA United States Department of Bioengineering University of Pennsylvania PhiladelphiaPA United States Department of Orthopaedic Surgery Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Bioengineering University of Pennsylvania Philadelphia PhiladelphiaPA United States Department of Clinical Sciences L
The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknow... 详细信息
来源: 评论
Bilevel learning of the group lasso structure  18
Bilevel learning of the group lasso structure
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Jordan Frecon Saverio Salzo Massimiliano Pontil Computational Statistics and Machine Learning Istituto Italiano di Tecnologia (Italy) Computational Statistics and Machine Learning Istituto Italiano di Tecnologia (Italy) and Department of Computer Science University College London (UK)
Regression with group-sparsity penalty plays a central role in high-dimensional prediction problems. However, most of existing methods require the group structure to be known a priori. In practice, this may be a too s...
来源: 评论
DESI Strong Lens Foundry I: HST Observations and Modeling with GIGA-Lens
arXiv
收藏 引用
arXiv 2025年
作者: Huang, X. Baltasar, S. Ratier-Werbin, N. Storfer, C. Sheu, W. Agarwal, S. Tamargo-Arizmendi, M. Schlegel, D.J. Aguilar, J. Ahlen, S. Aldering, G. Banka, S. BenZvi, S. Bianchi, D. Bolton, A. Brooks, D. Cikota, A. Claybaugh, T. de la Macorra, A. Dey, A. Doel, P. Edelstein, J. Filipp, A. Forero-Romero, J.E. Gaztañaga, E. Gontcho, S.A. Gontcho Gu, A. Gutierrez, G. Honscheid, K. Jullo, E. Juneau, S. Kehoe, R. Kirkby, D. Kisner, T. Kremin, A. Kwon, K.J. Lambert, A. Landriau, M. Lang, D. Le Guillou, L. Liu, J. Meisner, A. Miquel, R. Moustakas, J. Myers, A.D. Perlmutter, S. Pérez-Ràfols, I. Prada, F. Rossi, G. Rubin, D. Sanchez, E. Schubnell, M. Shu, Y. Silver, E. Sprayberry, D. Suzuki, N. Tarlé, G. Weaver, B.A. Zou, H. Department of Physics & Astronomy University of San Francisco San FranciscoCA94117 United States Physics Division Lawrence Berkeley National Laboratory 1 Cyclotron Road BerkeleyCA94720 United States Department of Physics Complutense University of Madrid Madrid28040 Spain Department of Mathematics Complutense University of Madrid Madrid28040 Spain Institute for Astronomy University of Hawai’i HonoluluHI96822-1897 United States Department of Physics & Astronomy University of California Los Angeles Los AngelesCA90095 United States University of Chicago Department of Astronomy ChicagoIL60615 United States Department of Physics & Astronomy University of Pittsburgh PittsburghPA15260 United States Physics Dept. Boston University 590 Commonwealth Avenue BostonMA02215 United States Department of Electrical Engineering & Computer Sciences University of California Berkeley BerkeleyCA94720 United States Department of Physics & Astronomy University of Rochester 206 Bausch and Lomb Hall P.O. Box 270171 RochesterNY14627-0171 United States Dipartimento di Fisica "Aldo Pontremoli" Università degli Studi di Milano Via Celoria 16 MilanoI-20133 Italy NSF’s National Optical-Infrared Astronomy Research Laboratory TucsonAZ85719 United States Department of Physics & Astronomy University College London Gower Street LondonWC1E 6BT United Kingdom Gemini Observatory NSF’s NOIRLab Casilla 603 La Serena Chile Instituto de Física Universidad Nacional Autónoma de México Circuito de la Investigación Científica Ciudad Universitaria Cd. de MéxicoC. P. 04510 Mexico Space Sciences Laboratory University of California Berkeley 7 Gauss Way BerkeleyCA94720 United States Université de Montréal Physics Department 1375 Av. Thérèse-Lavoie-Roux MontréalQCH2V 0B3 Canada Ciela – Montreal Institute for Astrophysical Data Analysis and Machine Learning 1375 Av. Thérèse-Lavoie-Roux MontréalQCH2V 0B3 Canada Technical University Munich TUM School of Natural Sciences
We present the Dark Energy Spectroscopic Instrument (DESI) Strong Lens Foundry. We discovered ∼ 3500 new strong gravitational lens candidates in the DESI Legacy Imaging Surveys using residual neural networks (ResNet)... 详细信息
来源: 评论