咨询与建议

限定检索结果

文献类型

  • 678 篇 期刊文献
  • 426 篇 会议
  • 4 册 图书

馆藏范围

  • 1,108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 690 篇 工学
    • 479 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 145 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 97 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 70 篇 光学工程
    • 57 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 25 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 21 篇 仪器科学与技术
  • 539 篇 理学
    • 321 篇 数学
    • 179 篇 统计学(可授理学、...
    • 165 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 63 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 23 篇 农学
  • 17 篇 经济学
  • 7 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 64 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 26 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 946 篇 英文
  • 159 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1108 条 记 录,以下是981-990 订阅
排序:
Distribution-Free Prediction Sets for Two-Layer Hierarchical Models
arXiv
收藏 引用
arXiv 2018年
作者: Dunn, Robin Wasserman, Larry Ramdas, Aaditya Novartis Pharmaceuticals Corporation Advanced Methodology and Data Science East HanoverNJ United States Department of Statistics & Data Science Carnegie Mellon University PittsburghPA United States Machine Learning Department Carnegie Mellon University PittsburghPA United States
We consider the problem of constructing distribution-free prediction sets for data from two-layer hierarchical distributions. For iid data, prediction sets can be constructed using the method of conformal prediction. ... 详细信息
来源: 评论
Author Correction: Drug classification with a spectral barcode obtained with a smartphone Raman spectrometer
收藏 引用
Nature communications 2023年 第1期14卷 5577页
作者: Un Jeong Kim Suyeon Lee Hyochul Kim Yeongeun Roh Seungju Han Hojung Kim Yeonsang Park Seokin Kim Myung Jin Chung Hyungbin Son Hyuck Choo Metaphotonics TU Samsung Advanced Institute of Technology Suwon Gyeonggi-do 16419 Republic of Korea. Machine Learning TU Samsung Advanced Institute of Technology Suwon Gyeonggi-do 16419 Republic of Korea. Department of Physics Chungnam National University Daejeon 34134 Korea. Institute of Quantum Systems Daejeon 34134 Korea. School of Integrative Engineering Chung-Ang University Seoul 06974 Republic of Korea. Department of Digital Health Samsung Advanced Institute of Health Science Sungkyunkwan University Seoul 06355 Korea. Department of Radiology Samsung Medical Center Sungkyunkwan University Seoul 06355 Korea. Department of Data Convergence and Future Medicine Sungkyunkwan University School of Medicine Suwon Gyeonggi-do 16419 Korea. Medical AI Research Center Research Institute for Future Medicine Samsung Medical Center Seoul 06351 Korea. Metaphotonics TU Samsung Advanced Institute of Technology Suwon Gyeonggi-do 16419 Republic of Korea. hyuck.choo@***.
来源: 评论
Bayesian network based label correlation analysis for multi-label classifier chain
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Ran Ye, Suhe Li, Ke Kwong, Sam College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China Department of Computer Science University of Exeter ExeterEX4 4QF United Kingdom Department of Computer Science City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong
Classifier chain (CC) is a multi-label learning approach that constructs a sequence of binary classifiers according to a label order. Each classifier in the sequence is responsible for predicting the relevance of one ... 详细信息
来源: 评论
Nonparametric regression with comparisons: Escaping the curse of dimensionality with ordinal information
arXiv
收藏 引用
arXiv 2018年
作者: Xu, Yichong Muthakana, Hariank Balakrishnan, Sivaraman Dubrawski, Artur Singh, Aarti Machine Learning Department Carnegie Mellon University Pittsburgh United States Department of Statistics and Data Science Carnegie Mellon University Pittsburgh United States Auton Lab Carnegie Mellon University Pittsburgh United States
In supervised learning, we leverage a labeled dataset to design methods for function estimation. In many practical situations, we are able to obtain alternative feedback, possibly at a low cost. A broad goal is to und... 详细信息
来源: 评论
learning-to-learn stochastic gradient descent with biased regularization
arXiv
收藏 引用
arXiv 2019年
作者: Denevi, Giulia Ciliberto, Carlo Grazzi, Riccardo Pontil, Massimiliano Computational Statistics and Machine Learning Istituto Italiano di Tecnologia Genoa16163 Italy Department of Mathematics University of Genoa Genoa16146 Italy Department of Electrical and Electronic Engineering Imperial College of London LondonSW7 1AL United Kingdom Department of Computer Science University College London LondonWC1E 6BT United Kingdom
We study the problem of learning-to-learn: inferring a learning algorithm that works well on tasks sampled from an unknown distribution. As class of algorithms we consider Stochastic Gradient Descent on the true risk ... 详细信息
来源: 评论
Noisy multi-label semi-supervised dimensionality reduction
arXiv
收藏 引用
arXiv 2019年
作者: Mikalsen, Karl Øyvind Soguero-Ruiz, Cristina Bianchi, Filippo Maria Jenssen, Robert Dept. of Mathematics and Statistics UiT The Arctic University of Norway Tromsø Norway UiT Machine Learning Group Dept. of Signal Theory and Comm. Telematics and Computing Universidad Rey Juan Carlos Fuenlabrada Spain Dept. of Physics and Technology UiT Tromsø Norway Department of Mathematics and Statistics Faculty of Science and Technology UiT – The Arctic University of Norway TromsøN-9037 Norway
Noisy labeled data represent a rich source of information that often are easily accessible and cheap to obtain, but label noise might also have many negative consequences if not accounted for. How to fully utilize noi... 详细信息
来源: 评论
Low rank approximation of binary matrices: Column subset selection and generalizations  43
Low rank approximation of binary matrices: Column subset sel...
收藏 引用
43rd International Symposium on Mathematical Foundations of Computer science, MFCS 2018
作者: Dan, Chen Hansen, Kristoffer Arnsfelt Jiang, He Wang, Liwei Zhou, Yuchen Carnegie Mellon University PittsburghPA United States Department of Computer Science Aarhus University Aarhus Denmark University of Southern California Los AngelesCA United States Key Laboratory of Machine Perception MOE School of EECS Peking University China Center for Data Science Peking University Beijing Institute of Big Data Research Beijing China Department of Statistics University of Wisconsin-Madison MadisonWI United States
Low rank approximation of matrices is an important tool in machine learning. Given a data matrix, low rank approximation helps to find factors, patterns, and provides concise representations for the data. Research on ... 详细信息
来源: 评论
Algorithmic regularization in learning deep homogeneous models: layers are automatically balanced  18
Algorithmic regularization in learning deep homogeneous mode...
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Simon S. Du Wei Hu Jason D. Lee Machine Learning Department School of Computer Science Carnegie Mellon University Computer Science Department Princeton University Department of Data Sciences and Operations Marshall School of Business University of Southern California
We study the implicit regularization imposed by gradient descent for learning multi-layer homogeneous functions including feed-forward fully connected and convolutional deep neural networks with linear, ReLU or Leaky ...
来源: 评论
Genome-wide association study of long COVID
收藏 引用
Nature Genetics 2025年 1-16页
作者: Lammi, Vilma Nakanishi, Tomoko Jones, Samuel E. Andrews, Shea J. Karjalainen, Juha Cortés, Beatriz O’Brien, Heath E. Ochoa-Guzman, Ana Fulton-Howard, Brian E. Broberg, Martin Haapaniemi, Hele H. Kanai, Masahiro Pirinen, Matti Schmidt, Axel Mitchell, Ruth E. Mousas, Abdou Mangino, Massimo Huerta-Chagoya, Alicia Sinnott-Armstrong, Nasa Cirulli, Elizabeth T. Vaudel, Marc Kwong, Alex S. F. Maiti, Amit K. Marttila, Minttu M. Posner, Daniel C. Rodriguez, Alexis A. Batini, Chiara Minnai, Francesca Dearman, Anna R. Warmerdam, C. A. Robert Sequeros, Celia B. Winkler, Thomas W. Jordan, Daniel M. Rešcenko, Raimonds Miano, Lorenzo Lane, Jacqueline M. Chung, Ryan K. Guillen-Guio, Beatriz Leavy, Olivia C. Carvajal-Silva, Laura Aguilar-Valdés, Kevin Frangione, Erika Guare, Lindsay Vergasova, Ekaterina Marouli, Eirini Striano, Pasquale Zainulabid, Ummu Afeera Kumar, Ashutosh Ahmad, Hajar Fauzan Edahiro, Ryuya Azekawa, Shuhei Maj, Carlo Pensel, Max C. Miller, Abigail Nöthen, Markus M. Behzad, Pari Schultz, Sonja Heggemann, Julia Balla, Daniella Morrison, David R. Mooser, Vincent Perley, Danielle Ragoussis, Jiannis Rousseau, Simon Shi, Fangyi Lathrop, G. Mark Yanishevsky, Solomia Laurent, Laetitia Auld, Daniel Bertrand, Mylene Boisclair, Ariane Bourque, Guillaume Bujold, David Durand, Madeleine Adra, Darin St-Cyr, Janick Niemi, Mari E. K. Iyengar, Sudha K. Cai, Tianxi Cho, Kelly Sarvadhavabhatla, Sannidhi Donaire, Maria Sophia Valenzuela-Jorquera, Héctor Lamoza, Eduardo Arévalo, Tamara V. Retamales-Ortega, Rocío Sanhueza, Sergio Selman, Carolina S. Silva, Andrea X. Alarcon, Teresa A. Martínez, Matías F. Quiroga, Romina Zuñiga-Pacheco, Paula Zapata-Contreras, Daniela Yáñez, Cristian E. Quiñones, Luis A. Tobar-Calfucoy, Eduardo A. Monardes-Ramírez, Virginia A. Signore, Iskra A. Guajardo, Lissette G. Figueroa, Alvaro Oróstica, Karen Y. Muñoz, Christian A. Fuentes-Guajardo, Macarena Bocchieri, Pamela Cabrera, Camilo Echeverria, Cesar A. Cerpa, Leslie C. Donoso, Gerardo Gutiérrez-Richards, Scarlett Nova-Lamperti, Estefania Saez Hidalgo Institute for Molecular Medicine Finland (FIMM) Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki Finland Department of Human Genetics McGill University Montreal QC Canada Centre for Clinical Epidemiology Department of Medicine Lady Davis Institute Jewish General Hospital McGill University Montreal QC Canada Kyoto-McGill International Collaborative Program in Genomic Medicine Graduate School of Medicine Kyoto University Kyoto Japan Department of Genome Informatics Graduate School of Medicine the University of Tokyo Tokyo Japan Research Fellow Japan Society for the Promotion of Science Tokyo Japan Department of Psychiatry and Behavioral Sciences University of California San Francisco San Francisco CA United States Program in Medical and Population Genetics Broad Institute of Harvard and MIT Cambridge MA United States Stanley Center for Psychiatric Research Broad Institute of Harvard and MIT Cambridge MA United States Analytic and Translational Genetics Unit Massachusetts General Hospital Boston MA United States Genomes for Life-GCAT Lab CORE Program Germans Trias i Pujol Research Institute (IGTP) Badalona Spain Grup de REcerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra) Barcelona Spain Sano Genetics Limited London United Kingdom Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Mexico City Mexico Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York City NY United States Broad Institute Cambridge MA United States Analytical and Translational Genetics Unit Massachusetts General Hospital Harvard Medical School Boston MA United States Department of Mathematics and Statistics University of Helsinki Helsinki Finland Department of Public Health University of Helsinki Helsinki Finland Institute of Human Genetics University of Bonn School of Medicine and University Hospital Bonn Bonn Germany MRC Integrat
Infections can lead to persistent symptoms and diseases such as shingles after varicella zoster or rheumatic fever after streptococcal infections. Similarly, severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2...
来源: 评论
Gradient descent finds global minima of deep neural networks
arXiv
收藏 引用
arXiv 2018年
作者: Du, Simon S. Lee, Jason D. Li, Haochuan Wang, Liwei Zhai, Xiyu Machine Learning Department Carnegie Mellon University Data Science and Operations Department University of Southern California School of Physics Peking University Center for Data Science Peking University Beijing Institute of Big Data Research Key Laboratory of Machine Perception Moe School of Eecs Peking University Department of Eecs Massachusetts Institute of Technology
Gradient descent finds a global minimum in training deep neural networks despite the objective function being non-convex. The current paper proves gradient descent achieves zero training loss in polynomial time for a ... 详细信息
来源: 评论