The rapid advancement and proliferation of Cyber-Physical systems (CPS) have led to an exponential increase in the volume of data generated continuously. Efficient classification of this streaming data is crucial for ...
详细信息
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical system(CPS)*** devices enable limited computational capacity and energy availability that hamper end ...
详细信息
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical system(CPS)*** devices enable limited computational capacity and energy availability that hamper end user *** designed a novel performance measurement index to gauge a device’s resource *** examination addresses the offloading mechanism issues,where the end user(EU)offloads a part of its workload to a nearby edge server(ES).Sometimes,the ES further offloads the workload to another ES or cloud server to achieve reliable performance because of limited resources(such as storage and computation).The manuscript aims to reduce the service offloading rate by selecting a potential device or server to accomplish a low average latency and service completion time to meet the deadline constraints of sub-divided *** this regard,an adaptive online status predictive model design is significant for prognosticating the asset requirement of arrived services to make float ***,the development of a reinforcement learning-based flexible x-scheduling(RFXS)approach resolves the service offloading issues,where x=service/resource for producing the low latency and high performance of the *** approach to the theoretical bound and computational complexity is derived by formulating the system efficiency.A quadratic restraint mechanism is employed to formulate the service optimization issue according to a set ofmeasurements,as well as the behavioural association rate and adulation *** system managed an average 0.89%of the service offloading rate,with 39 ms of delay over complex scenarios(using three servers with a 50%service arrival rate).The simulation outcomes confirm that the proposed scheme attained a low offloading uncertainty,and is suitable for simulating heterogeneous CPS frameworks.
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease ...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease diagnosis has demonstrated commendable effectiveness in promptly diagnosing patients and curbing infection transmission. The study introduces a deep learning-based model tailored for COVID-19 detection, leveraging three prevalent medical imaging modalities: computed tomography (CT), chest X-ray (CXR), and Ultrasound. Various deep Transfer Learning Convolutional Neural Network-based (CNN) models have undergone assessment for each imaging modality. For each imaging modality, this study has selected the two most accurate models based on evaluation metrics such as accuracy and loss. Additionally, efforts have been made to prune unnecessary weights from these models to obtain more efficient and sparse models. By fusing these pruned models, enhanced performance has been achieved. The models have undergone rigorous training and testing using publicly available real-world medical datasets, focusing on classifying these datasets into three distinct categories: Normal, COVID-19 Pneumonia, and non-COVID-19 Pneumonia. The primary objective is to develop an optimized and swift model through strategies like Transfer Learning, Ensemble Learning, and reducing network complexity, making it easier for storage and transfer. The results of the trained network on test data exhibit promising outcomes. The accuracy of these models on the CT scan, X-ray, and ultrasound datasets stands at 99.4%, 98.9%, and 99.3%, respectively. Moreover, these models’ sizes have been substantially reduced and optimized by 51.93%, 38.00%, and 69.07%, respectively. This study proposes a computer-aided-coronavirus-detection system based on three standard medical imaging techniques. The intention is to assist radiologists in accurately and swiftly diagnosing the disease, especially during the screen
Fiber materials are key materials that have changed human history and promoted the progress of human civilization. In ancient times, humans used feathers and animal skins for clothing, and later they widely employed n...
详细信息
Fiber materials are key materials that have changed human history and promoted the progress of human civilization. In ancient times, humans used feathers and animal skins for clothing, and later they widely employed natural fibers such as cotton, hemp, silk and wool to make fabrics(Fig. 1a). Chinese ancestors had mastered the art of natural fiber weaving as early as the Neolithic *** thousand years ago, people were already familiar with and adept at techniques for spinning natural fibers [1].
With the rapid development of technology, the use of social media by the public, especially among young people, is increasing. One of the social media platforms currently used by young people is the TikTok application...
详细信息
Graph neural networks(GNNs)have gained traction and have been applied to various graph-based data analysis tasks due to their high ***,a major concern is their robustness,particularly when faced with graph data that h...
详细信息
Graph neural networks(GNNs)have gained traction and have been applied to various graph-based data analysis tasks due to their high ***,a major concern is their robustness,particularly when faced with graph data that has been deliberately or accidentally polluted with *** presents a challenge in learning robust GNNs under noisy *** address this issue,we propose a novel framework called Soft-GNN,which mitigates the influence of label noise by adapting the data utilized in *** approach employs a dynamic data utilization strategy that estimates adaptive weights based on prediction deviation,local deviation,and global *** better utilizing significant training samples and reducing the impact of label noise through dynamic data selection,GNNs are trained to be more *** evaluate the performance,robustness,generality,and complexity of our model on five real-world datasets,and our experimental results demonstrate the superiority of our approach over existing methods.
Artificial Intelligence (AI) is a transformative technology that can embed intelligence and human-like behavior into systems and devices. To develop smart, intelligent, and automated systems that address current needs...
详细信息
The outputs of renewable energy sources(RESs)are inherently variable and uncertain,such as wind power(WP)and photovoltaic(PV).However,the outputs of various types of RESs in different regions are *** the capacity of R...
详细信息
The outputs of renewable energy sources(RESs)are inherently variable and uncertain,such as wind power(WP)and photovoltaic(PV).However,the outputs of various types of RESs in different regions are *** the capacity of RESs could be properly allocated during system planning,variability of the total output could be ***,system reliability and renewable energy(RE)consumption could be *** paper proposes an analytical model for optimal complementary capacity allocation of RESs to decrease variability of the total *** model considers the capacity ratio of RESs as decision variables and the coefficient of variation(CV)of the total output as the objective *** proposed approach transforms the single-level optimization model into a bilevel optimization model and derives an analytical equation that can directly calculate the optimal complementary capacity ratio(OCCR)of system *** studies on wind and solar farms in Xinjiang and Qinghai,China,are performed to verify the effectiveness of the proposed analytical allocation method.
Advancements in smart applications highlight the need for increased processing and storage capacity at Smart Devices (SDs). To tackle this, Edge computing (EC) is enabled to offload SD workloads to distant edge server...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
暂无评论