The air quality prediction process is a more significant one for air pollution prevention and management because air pollution becomes crueller. The precise identification of air quality has become a more significant ...
详细信息
Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on ...
详细信息
Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their *** proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their ***,two distinct kinds of features are obtained from the segmented images to help identify the objects of *** Artificial Neural Network(ANN)is then used to recognize the objects based on their *** were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested *** findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively.
This paper proposed a fully LTPS-TFT-based bi-directional biomedical pixel interface with integrated a high linearity stimulator and a high-performance bio-potential sensing front-end circuit to amplify and digitize b...
详细信息
The challenge of bankruptcy prediction, critical for averting financial sector losses, is amplified by the prevalence of imbalanced datasets, which often skew prediction models. Addressing this, our study introduces t...
详细信息
This paper explores recent innovation in the field of robotic teleoperation, presenting a state-of-the-art system for a robotic arm, configurable as an exoskeleton or prosthetic limb. Based on noninvasive neural heads...
详细信息
This systematic literature review delves into the dynamic realm of graphical passwords, focusing on the myriad security attacks they face and the diverse countermeasures devised to mitigate these threats. The core obj...
详细信息
Different techniques have been developed for object detection and recognition. These techniques can be divided into single-shot and two-shot methods. Single-shot methods focus on real-time applications, while two-shot...
详细信息
The increasing frequency of natural disasters has led to situations in which small urban centers and critical infrastructures become isolated from the main utility grid. The microgrids' ability to work autonomousl...
详细信息
The AC-DC Energy Nodes (ADENs) concept offers a transformative approach to modernizing power grids, particularly in the context of supergrids. By centralizing power flows from diverse renewable energy sources, such as...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
暂无评论