Diabetes mellitus is one of the most common diseases affecting patients of different ages. Diabetes can be controlled if diagnosed as early as possible. One of the serious complications of diabetes affecting the retin...
详细信息
This paper proposes a hybrid Modified Coronavirus Herd Immunity Aquila Optimization Algorithm (MCHIAO) that compiles the Enhanced Coronavirus Herd Immunity Optimizer (ECHIO) algorithm and Aquila Optimizer (AO). As one...
详细信息
This paper proposes a hybrid Modified Coronavirus Herd Immunity Aquila Optimization Algorithm (MCHIAO) that compiles the Enhanced Coronavirus Herd Immunity Optimizer (ECHIO) algorithm and Aquila Optimizer (AO). As one of the competitive human-based optimization algorithms, the Coronavirus Herd Immunity Optimizer (CHIO) exceeds some other biological-inspired algorithms. Compared to other optimization algorithms, CHIO showed good results. However, CHIO gets confined to local optima, and the accuracy of large-scale global optimization problems is decreased. On the other hand, although AO has significant local exploitation capabilities, its global exploration capabilities are insufficient. Subsequently, a novel metaheuristic optimizer, Modified Coronavirus Herd Immunity Aquila Optimizer (MCHIAO), is presented to overcome these restrictions and adapt it to solve feature selection challenges. In this paper, MCHIAO is proposed with three main enhancements to overcome these issues and reach higher optimal results which are cases categorizing, enhancing the new genes’ value equation using the chaotic system as inspired by the chaotic behavior of the coronavirus and generating a new formula to switch between expanded and narrowed exploitation. MCHIAO demonstrates it’s worth contra ten well-known state-of-the-art optimization algorithms (GOA, MFO, MPA, GWO, HHO, SSA, WOA, IAO, NOA, NGO) in addition to AO and CHIO. Friedman average rank and Wilcoxon statistical analysis (p-value) are conducted on all state-of-the-art algorithms testing 23 benchmark functions. Wilcoxon test and Friedman are conducted as well on the 29 CEC2017 functions. Moreover, some statistical tests are conducted on the 10 CEC2019 benchmark functions. Six real-world problems are used to validate the proposed MCHIAO against the same twelve state-of-the-art algorithms. On classical functions, including 24 unimodal and 44 multimodal functions, respectively, the exploitative and explorative behavior of the hybrid
Disease outbreaks are nowadays a critical issue despite the development and rapid growth of technology. One of the major challenges facing healthcare professionals and healthcare industries is disease prevention and c...
详细信息
Harris Hawks optimization (HHO) algorithm was a powerful metaheuristic algorithm for solving complex problems. However, HHO could easily fall within the local minimum. In this paper, we proposed an improved Harris Haw...
详细信息
This study introduces the CP-EODE algorithm, a novel hybrid of the Equilibrium Optimizer (EO), and the Differential Evolution (DE) algorithm. It addresses EO’s tendency toward premature convergence by enhancing its e...
详细信息
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the...
详细信息
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the lung cancer diagnosis, the higher the survival rate. For radiologists, recognizing malignant lung nodules from computed tomography (CT) scans is a challenging and time-consuming process. As a result, computer-aided diagnosis (CAD) systems have been suggested to alleviate these burdens. Deep-learning approaches have demonstrated remarkable results in recent years, surpassing traditional methods in different fields. Researchers are currently experimenting with several deep-learning strategies to increase the effectiveness of CAD systems in lung cancer detection with CT. This work proposes a deep-learning framework for detecting and diagnosing lung cancer. The proposed framework used recent deep-learning techniques in all its layers. The autoencoder technique structure is tuned and used in the preprocessing stage to denoise and reconstruct the medical lung cancer dataset. Besides, it depends on the transfer learning pre-trained models to make multi-classification among different lung cancer cases such as benign, adenocarcinoma, and squamous cell carcinoma. The proposed model provides high performance while recognizing and differentiating between two types of datasets, including biopsy and CT scans. The Cancer Imaging Archive and Kaggle datasets are utilized to train and test the proposed model. The empirical results show that the proposed framework performs well according to various performance metrics. According to accuracy, precision, recall, F1-score, and AUC metrics, it achieves 99.60, 99.61, 99.62, 99.70, and 99.75%, respectively. Also, it depicts 0.0028, 0.0026, and 0.0507 in mean absolute error, mean squared error, and root mean square error metrics. Furthermore, it helps physicians effectively diagnose lung cancer in its early stages and allows spe
In recent years, it has become possible to accumulate a large amount of browsing history data from users on websites and it is desirable to make use of such data for marketing purposes. In particular, customer browsin...
详细信息
The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered *** authors adopt a direct approach,i.e.,without identifying the unknown parameters and functions within the syst...
详细信息
The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered *** authors adopt a direct approach,i.e.,without identifying the unknown parameters and functions within the systems,adaptive regulators are directly designed based on the event-triggered observations on the regulation *** adaptive regulators belong to the stochastic approximation algorithms and under moderate assumptions,the authors prove that the adaptive regulators are optimal for both the Hammerstein and Wiener systems in the sense that the squared regulation errors are asymptotically *** authors also testify the theoretical results through simulation studies.
Parkinson’s disease (PD) is a neurodegenerative disorder with slow progression whose symptoms can be identified at late stages. Early diagnosis and treatment of PD can help to relieve the symptoms and delay progressi...
详细信息
暂无评论