咨询与建议

限定检索结果

文献类型

  • 746 篇 会议
  • 489 篇 期刊文献

馆藏范围

  • 1,235 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 676 篇 工学
    • 271 篇 控制科学与工程
    • 217 篇 计算机科学与技术...
    • 181 篇 软件工程
    • 110 篇 机械工程
    • 83 篇 电气工程
    • 75 篇 仪器科学与技术
    • 67 篇 电子科学与技术(可...
    • 57 篇 化学工程与技术
    • 56 篇 信息与通信工程
    • 56 篇 生物工程
    • 55 篇 生物医学工程(可授...
    • 45 篇 光学工程
    • 43 篇 材料科学与工程(可...
    • 40 篇 力学(可授工学、理...
    • 38 篇 动力工程及工程热...
    • 33 篇 土木工程
    • 26 篇 交通运输工程
    • 25 篇 航空宇航科学与技...
    • 24 篇 船舶与海洋工程
  • 408 篇 理学
    • 171 篇 数学
    • 141 篇 物理学
    • 78 篇 系统科学
    • 71 篇 生物学
    • 59 篇 统计学(可授理学、...
    • 44 篇 化学
    • 24 篇 海洋科学
  • 138 篇 管理学
    • 118 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 68 篇 医学
    • 55 篇 临床医学
    • 33 篇 基础医学(可授医学...
  • 15 篇 法学
  • 13 篇 经济学
  • 8 篇 农学
  • 5 篇 教育学
  • 1 篇 艺术学

主题

  • 94 篇 control systems
  • 48 篇 humans
  • 46 篇 control engineer...
  • 40 篇 motion control
  • 39 篇 robots
  • 38 篇 mobile robots
  • 37 篇 force control
  • 37 篇 fuzzy control
  • 36 篇 neural networks
  • 36 篇 manipulators
  • 36 篇 robot control
  • 36 篇 robot sensing sy...
  • 30 篇 service robots
  • 26 篇 mathematical mod...
  • 25 篇 industrial contr...
  • 23 篇 electrical equip...
  • 22 篇 electromyography
  • 20 篇 kinematics
  • 19 篇 intelligent robo...
  • 19 篇 fuzzy systems

机构

  • 68 篇 hubei key labora...
  • 66 篇 department of ad...
  • 66 篇 school of automa...
  • 47 篇 department of ad...
  • 24 篇 engineering rese...
  • 21 篇 department of as...
  • 20 篇 institute for pl...
  • 20 篇 department of ad...
  • 19 篇 department of ad...
  • 19 篇 department of ph...
  • 18 篇 university of so...
  • 18 篇 department of el...
  • 17 篇 scuola di ingegn...
  • 17 篇 infn sezione di ...
  • 17 篇 dipartimento di ...
  • 17 篇 università degli...
  • 17 篇 université libre...
  • 16 篇 department of ph...
  • 16 篇 advanced technol...
  • 16 篇 king’s college l...

作者

  • 53 篇 k. watanabe
  • 50 篇 keigo watanabe
  • 42 篇 kiyotaka izumi
  • 42 篇 k. izumi
  • 41 篇 watanabe keigo
  • 39 篇 k. kiguchi
  • 37 篇 m. nakamura
  • 35 篇 izumi kiyotaka
  • 33 篇 masatoshi nakamu...
  • 32 篇 nakamura masatos...
  • 28 篇 takenao sugi
  • 24 篇 sugi takenao
  • 21 篇 s. ali a. moosav...
  • 20 篇 kazuo kiguchi
  • 19 篇 r. takahashi
  • 19 篇 k. komori
  • 19 篇 t. kajita
  • 19 篇 c. kim
  • 19 篇 yue zhao
  • 19 篇 t. akutsu

语言

  • 1,170 篇 英文
  • 28 篇 其他
  • 25 篇 中文
  • 12 篇 日文
检索条件"机构=Department of Systems and Control Engineering Advanced Engineering Course"
1235 条 记 录,以下是341-350 订阅
排序:
Reduced order modeling of diffusively coupled network systems: An optimal edge weighting approach
arXiv
收藏 引用
arXiv 2020年
作者: Cheng, Xiaodong Yu, Lanlin Ren, Dingchao Scherpen, Jacquelien M.A. Control Systems Group Department of Electrical Engineering Eindhoven University of Technology Eindhoven5600 MB Netherlands Institute of Advanced Technology Westlake Institute for Advanced Study Westlake University Hangzhou310024 China Department of Automation University of Science and Technology of China Hefei230026 China Jan C. Willems Center for Systems and Control Engineering and Technology Institute Groningen Faculty of Science and Engineering University of Groningen Nijenborgh 4 Groningen9747 AG Netherlands
This paper studies reduced-order modeling of dynamic networks with strongly connected topology. Given a graph clustering of an original complex network, we construct a quotient graph with less number of vertices, wher... 详细信息
来源: 评论
Resilient 2-∞ filtering with dwell-time-based communication scheduling
收藏 引用
Nonlinear Analysis: Hybrid systems 2020年 37卷 100901-100901页
作者: Sun, Ying Ding, Derui Dong, Hongli Wei, Guoliang Department of Control Science and Engineering University of Shanghai for Science and Technology Shanghai200093 China Institute of Complex Systems and Advanced Control Key Laboratory of Networking and Intelligent Control Northeast Petroleum University Daqing163318 China College of Science University of Shanghai for Science and Technology Shanghai200093 China
This paper is concerned with the resilient filtering problem for a class of discrete-time stochastic nonlinear systems with both time-varying delays and probabilistic distributed delays. In order to save the limited c... 详细信息
来源: 评论
Resilient Multi-Dimensional Consensus in Adversarial Environment
arXiv
收藏 引用
arXiv 2020年
作者: Yan, Jiaqi Li, Xiuxian Mo, Yilin Wen, Changyun Department of Automation BNRist Tsinghua University Beijing China Department of Control Science and Engineering College of Electronics and Information Engineering Institute for Advanced Study Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai China School of Electrical and Electronic Engineering Nanyang Technological University Singapore
This paper considers the multi-dimensional consensus in networked systems, where some of the agents might be misbehaving (or faulty). Despite the influence of these misbehaviors, the benign agents aim to reach an agre... 详细信息
来源: 评论
LPV active fault-tolerant control strategy of large civil aircraft under elevator failures
LPV active fault-tolerant control strategy of large civil ai...
收藏 引用
CSAA/IET International Conference on Aircraft Utility systems 2020, AUS 2020
作者: Zhou, Zhiyuan Wang, Xingjian Wang, Shaoping Zhang, Yuwei Gavrilov, Alexander I. Nagamune, Ryozo School of Automation Science and Electrical Engineering Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data-Based Precision Medicine Beihang University Beijing100191 China Ningbo Institute of Technology Beihang University Ningbo315800 China Bauman Moscow State Technical University Department of Automatic Control Systems Moscow105005 Russia Department of Mechanical Engineering The University of British Columbia VancouverBCV6T1Z4 Canada
This paper proposes a scheme to achieve fault tolerant control to elevator failure of large aircraft. Meanwhile, the model of aircraft is expressed by linear-parameter-varying (LPV), and an LPV controller is designed.... 详细信息
来源: 评论
Pioneering the future of dentistry: AI-driven 3D bioprinting for next-generation clinical applications
Translational Dental Research
收藏 引用
Translational Dental Research 2025年 第1期1卷
作者: Zihui Liang Xiaohong Liao Huiyi Zong Xinyao Zeng Hong Liu Congcong Wu Kavya Keremane Bed Poudel Jun Yin Kai Wang Jin Qian Huanjiang Laboratory Zhejiang University Zhuji 311800 China National Local Joint Laboratory for Advanced Textile Processing and Clean Production Wuhan Textile University Wuhan 430073 China School of New Energy and Electrical Engineering Hubei University Wuhan 430073 China Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA The State Key Laboratory of Fluid Power Transmission and Control Systems School of Mechanical Engineering Zhejiang University Hangzhou 310027 China
Artificial intelligence (AI) is revolutionizing dentistry by enhancing the analysis of complex medical imaging data, automating the identification of anatomical landmarks, and improving diagnostic accuracy and treatme... 详细信息
来源: 评论
On PID control for synchronization of complex dynamical network with delayed nodes
收藏 引用
Science China(Technological Sciences) 2019年 第8期62卷 1412-1422页
作者: GU HaiBo Lv JinHu LIN ZongLi Key Laboratory of Systems and Control Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing 100049 China School of Automation Science and Electrical Engineering State Key Laboratory of Software Development Environment and Beijing Advanced Innovation Center for Big Data and Brain Machine Intelligence Beihang University Beijing 100083 China Charles L. Brown Department of Electrical and Computer Engineering University of Virginia Charlottesville VA 22904-4743 USA
Over the past two decades, synchronization, as an interesting collective behavior of complex dynamical networks, has been attracting much attention. To reveal and analyze the inherent mechanism of synchronization in c... 详细信息
来源: 评论
Adaptive future frame prediction with ensemble network
arXiv
收藏 引用
arXiv 2020年
作者: Kim, Wonjik Tanaka, Masayuki Okutomi, Masatoshi Sasaki, Yoko Department of Systems and Control Engineering School of Engineering Tokyo Institute of Technology Meguto-kuTokyo152-8550 Japan Artificial Intelligence Research Center National Institute of Advanced Industrial Science and Technology Koto-ku Tokyo135-0064 Japan
Future frame prediction in videos is a challenging problem because videos include complicated movements and large appearance changes. Learning-based future frame prediction approaches have been proposed in kinds of li... 详细信息
来源: 评论
Learning-based human segmentation and velocity estimation using automatic labeled lidar sequence for training
arXiv
收藏 引用
arXiv 2020年
作者: KIM, WONJIK TANAKA, MASAYUKI OKUTOMI, MASATOSHI SASAKI, YOKO Department of Systems and Control Engineering School of Engineering Tokyo Institute of Technology Meguro-ku Tokyo152-8550 Japan Artificial Intelligence Research Center National Institute of Advanced Industrial Science and Technology Koto-ku Tokyo135-0064 Japan
In this paper, we propose an automatic labeled sequential data generation pipeline for human segmentation and velocity estimation with point clouds. Considering the impact of deep neural networks, state-of-the-art net... 详细信息
来源: 评论
Increasing Part Geometric Accuracy in High Speed Machining using Cascade Iterative Learning control  9
Increasing Part Geometric Accuracy in High Speed Machining u...
收藏 引用
9th CIRP Conference on High Performance Cutting, HPC 2020
作者: Ward, Rob Ozkirimli, Omer Jones, Bryn Industrial Doctorate Centre in Machining Science Advanced Manufacturing Research Centre with Boeing University of Sheffield Rotherham S60 5TZ United Kingdom Machining Dynamics Research Group Advanced Manufacturing Research Centre with Boeing University of Sheffield Rotherham S60 5TZ United Kingdom Department of Automatic Control and Systems Engineering University of Sheffield SheffieldS1 3JD United Kingdom
High speed machining provides high productivity and low machining cycle times. Post machining, there can exist differences between desired and measured part geometry due to tool deflection induced from higher feedrate... 详细信息
来源: 评论
Research on path planning of robot based on deep reinforcement learning
Research on path planning of robot based on deep reinforceme...
收藏 引用
第三十九届中国控制会议
作者: Feng Liu Chang Chen Zhihua Li Zhi-Hong Guan Hua O Wang School of Automation China University of Geosciences Hubei key Laboratory of Advanced Control and Intelligent Automation for Complex Systems College of Automation Huazhong University of Science and Technology Department of Mechanical Engineering Boston University
In this paper, to avoid the problem of local optimization and slow convergence in complex environment, a reinforcement learning algorithm is proposed to solve the problem. A robot path planning model is built and its ... 详细信息
来源: 评论