App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(M...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior *** research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and *** propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification *** analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,*** contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews *** advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.
Objective: The purpose of this paper was to use Machine Learning (ML) techniques to extract facial features from images. Accurate face detection and recognition has long been a problem in computer vision. According to...
详细信息
Human activity recognition (HAR) techniques pick out and interpret human behaviors and actions by analyzing data gathered from various sensor devices. HAR aims to recognize and automatically categorize human activitie...
详细信息
The medical domain faces unique challenges in Information Retrieval (IR) due to the complexity of medical language and terminology discrepancies between user queries and documents. While traditional Keyword-Based Meth...
详细信息
Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing *** Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Lan...
详细信息
Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing *** Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Language(JSL)for ***,existing JSL recognition systems have faced significant performance limitations due to inherent *** response to these challenges,we present a novel JSL recognition system that employs a strategic fusion approach,combining joint skeleton-based handcrafted features and pixel-based deep learning *** system incorporates two distinct streams:the first stream extracts crucial handcrafted features,emphasizing the capture of hand and body movements within JSL ***,a deep learning-based transfer learning stream captures hierarchical representations of JSL gestures in the second ***,we concatenated the critical information of the first stream and the hierarchy of the second stream features to produce the multiple levels of the fusion features,aiming to create a comprehensive representation of the JSL *** reducing the dimensionality of the feature,a feature selection approach and a kernel-based support vector machine(SVM)were used for the *** assess the effectiveness of our approach,we conducted extensive experiments on our Lab JSL dataset and a publicly available Arabic sign language(ArSL)*** results unequivocally demonstrate that our fusion approach significantly enhances JSL recognition accuracy and robustness compared to individual feature sets or traditional recognition methods.
The agriculture industry's production and food quality have been impacted by plant leaf diseases in recent years. Hence, it is vital to have a system that can automatically identify and diagnose diseases at an ini...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
Due to the importance of Critical Infrastructure(Cl)in a nation's economy,they have been lucrative targets for cyber *** critical infrastructures are usually Cyber-Physical Systems such as power grids,water,and se...
详细信息
Due to the importance of Critical Infrastructure(Cl)in a nation's economy,they have been lucrative targets for cyber *** critical infrastructures are usually Cyber-Physical Systems such as power grids,water,and sewage treatment facilities,oil and gas pipelines,*** recent times,these systems have suffered from cyber attacks numer-ous *** have been developing cyber security solutions for Cls to avoid lasting *** to standard frameworks,cyber security based on identification,protection,detection,response,and recovery are at the core of these *** of an ongoing attack that escapes standard protection such as firewall,anti-virus,and host/network intrusion detection has gained importance as such attacks eventually affect the physical dynamics of the ***,anomaly detection in physical dynamics proves an effective means to implement *** is one example of anomaly detection in the sensor/actuator data,representing such systems physical *** present EPASAD,which improves the detection technique used in PASAD to detect these micro-stealthy attacks,as our experiments show that PASAD's spherical boundary-based detection fails to *** method EPASAD overcomes this by using Ellipsoid boundaries,thereby tightening the boundaries in various dimen-sions,whereas a spherical boundary treats all dimensions *** validate EPASAD using the dataset produced by the TE-process simulator and the C-town *** results show that EPASAD improves PASAD's average recall by 5.8%and 9.5%for the two datasets,respectively.
Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, an...
详细信息
Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, and cost. In recent years, convolution neural networks (CNNs) have revolutionized computer vision. Convolution is a "local" CNN technique that is only applicable to a small region surrounding an image. Vision Transformers (ViT) use self-attention, which is a "global" activity since it collects information from the entire image. As a result, the ViT can successfully gather distant semantic relevance from an image. This study examined several optimizers, including Adamax, SGD, RMSprop, Adadelta, Adafactor, Nadam, and Adagrad. With 1750 Healthy and Glaucoma images in the IEEE fundus image dataset and 4800 healthy and glaucoma images in the LAG fundus image dataset, we trained and tested the ViT model on these datasets. Additionally, the datasets underwent image scaling, auto-rotation, and auto-contrast adjustment via adaptive equalization during preprocessing. The results demonstrated that preparing the provided dataset with various optimizers improved accuracy and other performance metrics. Additionally, according to the results, the Nadam Optimizer improved accuracy in the adaptive equalized preprocessing of the IEEE dataset by up to 97.8% and in the adaptive equalized preprocessing of the LAG dataset by up to 92%, both of which were followed by auto rotation and image resizing processes. In addition to integrating our vision transformer model with the shift tokenization model, we also combined ViT with a hybrid model that consisted of six different models, including SVM, Gaussian NB, Bernoulli NB, Decision Tree, KNN, and Random Forest, based on which optimizer was the most successful for each dataset. Empirical results show that the SVM Model worked well and improved accuracy by up to 93% with precision of up to 94% in the adaptive equalization preprocess
This paper explores the concept of isomorphism in cellular automata (CAs), focusing on identifying and understanding isomorphic relationships between distinct CAs. A cellular automaton (CA) is said to be isomorphic to...
详细信息
暂无评论