Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate...
详细信息
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate *** this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in *** support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the *** the model complexity and the overall model *** fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA *** far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no ***,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA *** indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that *** the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model *** Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions.
Heterogeneous Graph Neural Networks are an efficient and powerful tool for modeling graph structure data in recommendation systems. However, existing heterogeneous graph neural networks often fail to model the depende...
详细信息
作者:
Yue, HaoXu, YakunHu, HesuanWu, WeiminLi, Lingxi
College of Computer Science and Technology Qingdao266580 China Xidian University
School of Electro-Mechanical Engineering Xi'an710071 China Nanyang Technological University
School of Computer Science and Engineering College of Engineering 639798 Singapore Zhejiang University
State Key Laboratory of Industrial Control Technology Hangzhou310027 China Zhejiang University
Institute of Cyber-Systems and Control Hangzhou310027 China Purdue University
Elmore Family School of Electrical and Computer Engineering College of Engineering IndianapolisIN46202 United States
This article proposes an approach to addressing the problem of minimum initial marking (MuIM) estimation for labeled Petri nets (LPNs). We introduce the important concept of a label synthesis net for LPNs and develop ...
详细信息
The emergence of the novel COVID-19 virus has had a profound impact on global healthcare systems and economies, underscoring the imperative need for the development of precise and expeditious diagnostic tools. Machine...
详细信息
The emergence of the novel COVID-19 virus has had a profound impact on global healthcare systems and economies, underscoring the imperative need for the development of precise and expeditious diagnostic tools. Machine learning techniques have emerged as a promising avenue for augmenting the capabilities of medical professionals in disease diagnosis and classification. In this research, the EFS-XGBoost classifier model, a robust approach for the classification of patients afflicted with COVID-19 is proposed. The key innovation in the proposed model lies in the Ensemble-based Feature Selection (EFS) strategy, which enables the judicious selection of relevant features from the expansive COVID-19 dataset. Subsequently, the power of the eXtreme Gradient Boosting (XGBoost) classifier to make precise distinctions among COVID-19-infected patients is *** EFS methodology amalgamates five distinctive feature selection techniques, encompassing correlation-based, chi-squared, information gain, symmetric uncertainty-based, and gain ratio approaches. To evaluate the effectiveness of the model, comprehensive experiments were conducted using a COVID-19 dataset procured from Kaggle, and the implementation was executed using Python programming. The performance of the proposed EFS-XGBoost model was gauged by employing well-established metrics that measure classification accuracy, including accuracy, precision, recall, and the F1-Score. Furthermore, an in-depth comparative analysis was conducted by considering the performance of the XGBoost classifier under various scenarios: employing all features within the dataset without any feature selection technique, and utilizing each feature selection technique in isolation. The meticulous evaluation reveals that the proposed EFS-XGBoost model excels in performance, achieving an astounding accuracy rate of 99.8%, surpassing the efficacy of other prevailing feature selection techniques. This research not only advances the field of COVI
An IoT-based self-sustained public toilet maintenance system aims to improve hygiene, efficiency, and resource management. It integrates smart sensors, microcontrollers, and cloud connectivity to monitor parameters su...
详细信息
A stochastic-gradient-based interior-point algorithm for minimizing a continuously differentiable objective function (that may be nonconvex) subject to bound constraints is presented, analyzed, and demonstrated throug...
详细信息
Artificial Intelligence (AI) and the Internet of Things (IoT) are developing so fast that they can bring revolutionary changes in ecological sustainability, public health, and community welfare. In contrast, the prese...
详细信息
Artificial Intelligence (AI) and the Internet of Things (IoT) are developing so fast that they can bring revolutionary changes in ecological sustainability, public health, and community welfare. In contrast, the present waste management system has a set of inefficiencies due to some challenges, such as poor waste stream segregation, limited real-time data analysis, and negligible integration of recent technology. These challenges lead to environmental degradation, public health hazards, and inefficient usage of resources. This research targets these challenges by designing an IWM framework like AI-IoT for smart waste management. The system employs AI models powered by IoT sensors for efficient waste collection, classification, and optimization of recycling schedules. CNN (convolutional neural networks) with transfer learning enabled by Res-Net provides high-accuracy image recognition, which can be used for waste classification. Bidirectional Encoder Representations from Transformers (BERT) allow multilingual users to interact and communicate properly in any linguistic environment. Data collected from IoT-enabled smart bins is transmitted in real-time to a central control system for dynamic decision-making and follow-up analysis. A pilot exercise to verify the system's effectiveness was implemented in metropolitan settings to show the transformation: landfill dependency was decreased by 30 %, recycling efficiency was greatly increased to 90 %, and thus the cost of waste management was optimized. At the same time, environmental health inequity, causing pathogen-related threats, was reduced by 35 %. The model has an accuracy of 96.8 %. The features of the proposed framework not only provide solutions to the existing inefficiencies but also enhance scalability, cost-effectiveness, and global environmental standardization. This dawns the futuristic growth of AI- and IoT-enabled waste management systems, which hinge on sustainability, public health, and resource efficienc
Fruits are absolutely delicious for the most part, but more importantly, they are good for healthy life. Fruits are nature's candy and offer all sorts of health benefits besides the great taste. They provide neces...
详细信息
Portfolio theory underpins portfolio management, a much-researched yet uncharted field. Stock market prediction is a challenging and essential endeavour in financial research, owing to the nonlinear, volatile, and sto...
详细信息
A collaborative system that includes mobile devices (MDs), edge nodes (ENs), and the cloud is needed where ENs at the network edge can run offloaded tasks of MDs with limited resources and energy for timely processing...
详细信息
暂无评论